ヒッグス機構
(ヒッグス場の入門 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/05/09 16:29 UTC 版)
標準模型 | ||||||||
---|---|---|---|---|---|---|---|---|
![]() |
||||||||
標準模型の素粒子 | ||||||||
|
||||||||
ヒッグス機構(ヒッグスきこう、Higgs mechanism)とは、ピーター・ヒッグスが1964年に提唱した、ゲージ対称性の自発的破れとゲージ粒子の質量獲得に関する理論である[1]。
ゲージ理論においてゲージ場が質量項を持つことはないが、ヒッグス機構ではヒッグス場が真空期待値を持つことで系の対称性を破り、ゲージ粒子はヒッグス場との相互作用を通して質量を獲得するものと考える。
ただし、この理論によれば真空と同じ量子数を持つスカラー粒子が現れるとされるので、この理論が現実の物理に適用できるものだと証明するためには、その粒子(ヒッグス粒子)を実験的に見つけることが課題になる[2]。
この機構(メカニズム)は、まず1962年にフィリップ・アンダーソンによって提唱され、類似のモデルが1964年に3つの独立したグループによって発展させられた。すなわち (1) ロベール・ブルーとフランソワ・アングレール 、(2) ピーター・ヒッグス、および(3) ゲラルド・グラルニクとC・R・ヘイガンとトマス・キブルの3グループである。よって、このメカニズムは次のような様々な呼称で呼ばれている。Brout–Englert–Higgs mechanism(ブルー・エングレール・ヒッグス・メカニズム)、あるいはEnglert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism,[3] Anderson–Higgs mechanism,[4] Higgs–Kibble mechanism(アブドゥッサラームによる)[5]あるいはできるだけ頭文字だけにしてABEGHHK'tH mechanism (Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and 't Hooftの頭文字。ピーター・ヒッグスが他の研究者たちに敬意を払ってこう呼んだ。)[5]。
概要
ゲージ対称性を持つ理論において、ラグランジアンの中にゲージ場の質量項は入らないため、ゲージ場の裸の質量は0である。しかしながら、ヒッグス機構はゲージ場とスカラー場の相互作用によって、低エネルギーにおいてゲージ粒子に質量を与えることが出来る[2]。 つまり、もしヒッグス機構が起こっていれば、従来は困難とされたゲージ粒子の質量に対して、物理学的に整合性を保った、合理的な説明が与えられる。
系の対称性が破れると南部・ゴールドストーン粒子が生じるが、この機構が起こるときには物理的な南部・ゴールドストーン粒子は現れず、その自由度はゲージ場の縦波成分として吸収されてゲージ場は質量を持ったベクトル粒子となる[2]。 この機構において系の対称性を破るために導入される場はヒッグス場と呼ばれる[6]。 ヒッグス場はゲージ群の下で非自明な表現(チャージ)をもち、ゲージ理論に従ってゲージ相互作用をする。 ヒッグス場が真空期待値をもつと対称性が破れ、ヒッグス場とのゲージ相互作用を通じてゲージ場は質量を獲得する。 対称性が破れた後に残る場が量子化されて得られる粒子がヒッグス粒子である[6]。
種々のヒッグス場
標準模型における例
ワインバーグ=サラム理論或いはそれを含む標準模型において、ヒッグス場はウィークアイソスピンとウィークハイパーチャージのチャージをもつ。 ヒッグス場が真空期待値をもつと、電弱対称性が破れてWボソンとZボソンは質量を獲得する。 なお、フェルミオンはヒッグス場が真空期待値を持つことで湯川相互作用を通して質量を獲得するが、湯川相互作用項はゲージ理論から要請される項ではない。
ヒッグス三重項
グラショウ=ワインバーグ=サラム模型におけるヒッグス場は、複素2成分のスカラー場が導入され、ウィークアイソスピン SU(2)L の二重項として振る舞う。 電弱対称性 SU(2)L×U(1)Y を破るヒッグス場は二重項に限らず、次に簡単な模型として複素3成分のスカラー場であるヒッグス三重項(Higgs triplet)が考え得る[7]。
Y = 1 のとき、電荷は Q = T3 + Y より、Δ = (Δ0,Δ+,Δ++)である。 ヒッグス三重項は SU(2)L の随伴表現として振る舞い
- ヒッグス場の入門のページへのリンク