その他の標準形とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > その他の標準形の意味・解説 

その他の標準形

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/30 12:50 UTC 版)

円 (数学)」の記事における「その他の標準形」の解説

三点標準形 同一直線上にない三点を (xi, yi) (i = 1, 2, 3) とすると、その三点を通るという条件を満たす円は一つ決まりその方程式を ( x − x 1 ) ( x − x 2 ) + ( y − y 1 ) ( y − y 2 ) ( y − y 1 ) ( x − x 2 ) − ( y − y 2 ) ( x − x 1 ) = ( x 3 − x 1 ) ( x 3 − x 2 ) + ( y 3 − y 1 ) ( y 3 − y 2 ) ( y 3 − y 1 ) ( x 3 − x 2 ) − ( y 3 − y 2 ) ( x 3 − x 1 ) {\displaystyle {\frac {({\color {green}x}-x_{1})({\color {green}x}-x_{2})+({\color {red}y}-y_{1})({\color {red}y}-y_{2})}{({\color {red}y}-y_{1})({\color {green}x}-x_{2})-({\color {red}y}-y_{2})({\color {green}x}-x_{1})}}={\frac {(x_{3}-x_{1})(x_{3}-x_{2})+(y_{3}-y_{1})(y_{3}-y_{2})}{(y_{3}-y_{1})(x_{3}-x_{2})-(y_{3}-y_{2})(x_{3}-x_{1})}}} という形に表すことができる。これは行列式用いて | x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 | = 0 {\displaystyle {\begin{vmatrix}x^{2}+y^{2}&x&y&1\\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1\end{vmatrix}}=0} と表すこともできる

※この「その他の標準形」の解説は、「円 (数学)」の解説の一部です。
「その他の標準形」を含む「円 (数学)」の記事については、「円 (数学)」の概要を参照ください。

ウィキペディア小見出し辞書の「その他の標準形」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「その他の標準形」の関連用語

その他の標準形のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



その他の標準形のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの円 (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS