ニトロゲナーゼ 発現調節

ニトロゲナーゼ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/03 07:47 UTC 版)

発現調節

まず、ニトロゲナーゼ系は大量のATPを要求するため、酸化的リン酸化あるいは光リン酸化がおこなわれる条件でのみ窒素固定反応が見られる。さらにニトロゲナーゼ活性は酵素発現量の調節およびADPの拮抗阻害によって行われる。ニトロゲナーゼは生産物であるアンモニアの存在によって発現量が低下する。アンモニア自体はニトロゲナーゼ反応の阻害物質にはならない。ADPの拮抗阻害について、リボシル化されたADPがニトロゲナーゼ還元酵素の強力な阻害剤となることが明らかになっている[31]。ADPのリボシル化はニトロゲナーゼ還元酵素ADPリボシル転移酵素(DRAT: Dinitrogenase Reductase ADP-ribosyltransferase)がかかわっており、本酵素は暗条件(光リン酸化がおこなわれない条件)やアンモニウム塩の添加によって誘導される。リボシル化ADPによって阻害されたニトロゲナーゼ還元酵素はニトロゲナーゼ還元酵素活性化グリコヒドロキシラーゼ(DRAG: Dinitrogenase Reductase Activating Glycohydrolase)によって付活され、再活性化する。DRATおよびDRAGはともに精製され、性状解析がおこなわれている[32]

酸素耐性機構

窒素固定反応は古くから知られていたが、1960年のCarnahanの無細胞標品の抽出まで長らく生化学的性質が明らかではなかった[19][20]。Carnahanは酸素を極力除去し、通常4 ℃で扱うタンパク質標品を20 ℃で扱うことによってニトロゲナーゼの活性を残存させることに成功した。ニトロゲナーゼ還元酵素およびニトロゲナーゼ二量体のいずれも酸素に対して不可逆失活する。ニトロゲナーゼ還元酵素の空気暴露に対する半減期(t1/2)は30秒、そしてニトロゲナーゼ二量体のt1/2は4分である[1]

上述のように、嫌気性菌以外にも通性嫌気性菌、好気性菌そして根粒菌がニトロゲナーゼ活性を有している。嫌気性菌については完全嫌気状態でなければ窒素固定反応は行わない。また通性嫌気性菌については酸素濃度が1キロパスカル以下の条件でなければ窒素固定反応は同様に行われない。また、A. vinelandiiのような好気性細菌については自らの高い酸素呼吸活性によって細胞周辺の酸素を極力除去し、なおかつニトロゲナーゼの立体構造の違いによって酸素の影響を回避している[2][33]

根粒菌については酸素に高い親和性を有するレグヘモグロビンを根粒の周囲に配置することによってニトロゲナーゼ系から酸素を除去している。レグヘモグロビンにとりこまれた酸素はニトロゲナーゼ系に触れることなく、植物の根を経て吸収され、体内で酸化的リン酸化に用いられる[2]

シアノバクテリア光化学系のIとIIを同時に有し、酸素発生型光合成をおこなう。したがって、ニトロゲナーゼ系とは極めて相性が悪い。しかしながらAnabaena属のような繊維状のシアノバクテリアは酸素を発生する光化学系IIを細胞から除去したヘテロシスト(異質細胞)にニトロゲナーゼを発現し、窒素固定反応を行っている[10]。しかしながら、繊維状の形態をとらない単細胞のシアノバクテリア(Trichodesmium属など)においてもニトロゲナーゼ系および窒素固定反応が確認されている。そうしたシアノバクテリアは昼間に光合成を行いATPを蓄積した後に、夜間窒素固定反応を行うといった方法をとっている[2]。ただし、光合成と窒素固定を同時に行うシアノバクテリアも見つかっており、それらの機構についてはいまだ謎に包まれている[34]

参考文献

[脚注の使い方]

  1. ^ a b 田宮信雄、八木達彦(1991)コーン・スタンプ生化学 第5版
  2. ^ a b c d e R. H. Burris (1991) Nitrogenases, J. Biol. Chem., 266 (15), 9339-9342
  3. ^ J. M. Rivera-Ortiz and R. H. Burris (1975) J. Bacteriol., 123, 537-545
  4. ^ Rasmussen, L. J., Peters, G. K., and Burris, R. H. (1989) Phykos 28, 64-79
  5. ^ Yoneyama, T., Yamada, N., Kojima, H., and Yazaki, J. (1984) Plant Cell Physiol., 25, 1561-1565
  6. ^ L. E. Mortenson, (1964) Biochim. Biophys. Acta, 81, 473-478
  7. ^ Shah, V. K., Stacey, G., and Brill, W. J. (1983) J. Biol. Chem. 258, 12064-12068
  8. ^ B. Fodor, G. Rakhely, A. T. Kovacs and K. L. Kovacs (2001) Transposon mutagenesis in purple sulfur photosynthetic bacteria: identification of hypF, encoding a protein capable of processing [NiFe] hydrogenases in alpha, beta, and gamma subdivisions of the proteobacteria, Appl. Environ. Microbiol., 67, 2476-2483
  9. ^ Young, J. P. W. 1992. Phylogenetic classification of nitrogen-fixing organisms, p. 43-86. In G. Stacey, R. H. Burris, and H. J. Evans (ed.), Biological nitrogen fixation. Chapman and Hall, New York, N.Y.
  10. ^ a b 桜井英博、柴岡弘郎、清水碩(1997)植物生理学入門、培風館
  11. ^ a b c Luis M. Rubio and Paul W. Ludden (2005) Maturation of Nitrogenase: a Biochemical Puzzle, J. Bacteriol., 187, 405-414
  12. ^ Bishop, P. E., D. M. L. Jarlenski, and D. R. Hetherington. 1980. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA 77:7342-7346
  13. ^ Bishop, P. E., R. Premakumar, D. R. Dean, M. R. Jacobson, J. R. Chisnell, T. M. Rizzo, and J. Kopczynski. 1986. Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92-94
  14. ^ Davis, R., L. Lehman, R. Petrovich, V. K. Shah, G. P. Roberts, and P. W. Ludden. 1996. Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J. Bacteriol. 178, 1445-1450.
  15. ^ Schneider, K., A. Muller, U. Schramm, and W. Klipp. 1991. Demonstration of a molybdenum- and vanadium-independent nitrogenase in a nifHDKdeletion mutant of Rhodobacter capsulatus. Eur. J. Biochem. 195:653-661.
  16. ^ Thiel, T. 1993. Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J. Bacteriol. 175:6276-6286
  17. ^ Arnold, W., A. Rump, W. Klipp, U. B. Priefer, and A. Puhler. 1988. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J. Mol. Biol. 203: 715-738.
  18. ^ Ribbe, M., D. Gadkari, and O. Meyer. 1997. N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J. Biol. Chem. 272:26627-26633
  19. ^ a b Carnahan. J. E.. Mortenson. L. E.. Mower. H. F.. and Castle. J. E. (1960) Biochim. Biophys. Acta 38, 188-189
  20. ^ a b Carnahan. J. E.. Mortenson. L. E.. Mower. H. F.. and Castle. J. E. (1960) Biochim. Biophys. Acta 44, 520-535
  21. ^ Mortenson, L. E. (1965) in Non-Heme Iron Proteins: Role in Energy Conversion (San Pietro, A., ed) pp. 243-259, Antioch Press, Yellow Springs OH
  22. ^ Winter, H. C., and Burris, R. H. (1968) J. Biol. Chem. 243,940-944
  23. ^ Orme-Johnson, W. H., Hamilton, W. D., Ljones, T., Tso, M.-Y. W., Burris, R. H., Shah, V. K., and Brill, W. J. (1972) Proc. Natl. Acad. Sci. U. S. A. 69, 3142-3145
  24. ^ Zumft, W. G., and Mortenson, L. E. (1975) Biochim. Biophys. Acta 416, 1-52
  25. ^ John W Peters and Robert K Szilagyi (2006) Exploring new frontiers of nitrogenase structure and mechanism. Current Opinion in Chemical Biology, 10:101-108
  26. ^ Dos Santos, P. C., D. R. Dean, Y. Hu, and M. W. Ribbe. 2004. Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem. Rev. 104:1159-1173
  27. ^ Imperial, J., V. K. Shah, R. A. Ugalde, P. W. Ludden, and W. J. Brill. 1987. Iron-molybdenum cofactor synthesis in Azotobacter vinelandii Nif- mutants. J. Bacteriol. 169:1784-1786.
  28. ^ Roberts, G. P., MacNeil, T., MacNeil, D., andBrill, W. J. (1978) J. Bacteriol. 136, 267-279
  29. ^ Rangaraj, P., C. Ruttimann-Johnson, V. K. Shah, and P. W. Ludden. 2000. Biosynthesis of the iron-molybdenum and iron-vanadium cofactors of the nif- and vnf-encoded nitrogenases, p. 55-79. In E. W. Triplett (ed.), Prokaryotic nitrogen fixation: a model system for analysis of a biochemical process. Horizon Scientific Press, Wymondham, United Kingdom.
  30. ^ Kennedy, C., and D. Dean. 1992. The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol. Gen. Genet. 231:494-498.
  31. ^ Ludden, P. W., and Burns, R. H. (1976) Science 194,424-426
  32. ^ Ludden, P. W., and Roberts, G. P. (1989) Curr. Top. Cell. Regul. 30,23-56
  33. ^ Postgate, J. R. (1982) The Fundamentals of Nitrogen Fixation, Cambridge University Press, London
  34. ^ Bergmann, B., Gallon, J, R., Rai, A. N., and Stal, L. J., (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS. Microbiol. Rev., 19, 139-185





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ニトロゲナーゼ」の関連用語

ニトロゲナーゼのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ニトロゲナーゼのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのニトロゲナーゼ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS