Suslin's problemとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Suslin's problemの意味・解説 

ススリンの問題

(Suslin's problem から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/01 15:55 UTC 版)

数学における、ススリンの問題(ススリンのもんだい)とは1920年に発表されたミハイル・ヤコヴレヴィチ・ススリンの遺稿で提示された全順序集合に関する問題である[1]

この問題は標準的な公理的集合論の体系として知られるZFCと独立であることが知られている。すなわち、この問題はZFCの下で証明も反証もされない[2]

(Suslinは、キリル文字表記Суслинに由来するフランス翻字でSouslinとも書かれることがある。)

定式化

空でない全順序集合Rで、以下の4条件を満たすものが与えられたとする。

  1. Rは最小元も最大元も持たない。
  2. R上のその順序は稠密である。(任意の異なる2元の間に、第3の元が必ず存在する。)
  3. R上のその順序は完備である。すなわち、任意の空でない有界な集合は上限と下限を持つ。
  4. R上の互いに交わらない空でない開区間の族は、その濃度が高々可算となる。(すなわち、R可算鎖条件 : c.c.c. を満たす)

このとき、Rは必ず実数直線Rと順序位相同型となるか?

もし、Rが可算鎖条件を満たすための必要条件が、Rが可算な稠密部分集合を持つ(すなわち、R可分空間である)ことに置き換えられるなら、この問いの答えはyesでこのようなRは実数直線Rに順序位相同型となる。

ススリンの仮説

実数直線Rと同型でないが(1) – (4)を満たす全順序集合はススリン線として知られている。ススリン線の存在性はススリン木の存在性と同値であることが証明されている。構成可能性公理V=Lの仮定の下ではススリン線は存在する。

ススリンの仮説(SH)とは、ススリン線は存在しない(すなわち、c.c.c.を満たす、 端点を持たない稠密完備線型順序は、実数直線と同型である)という命題である。 高さω1の木は、長さω1の枝か濃度ω1の反鎖を持つ。という命題とも同値である。 (高さω1の木で、長さω1の枝も濃度ω1の反鎖も持たない木をススリン木という。)

一般化されたススリンの仮説(GSH)とは、いかなる無限正則基数κについても、高さκの木は、必ず長さκの枝か濃度κの反鎖を持つ。という命題である。

SHはZFCと独立で、一般連続体仮説(GCH)・連続体仮説の否定(¬CH)のどちらとも独立である。しかしながら、マーティンの公理(MA)+¬CH からはSHが導かれる。GCHとGSHが互いに矛盾しないかどうかは分かっていない。

関連項目

出典

  1. ^ Souslin, M. (1920). “Problème 3”. Fundamenta Mathematicae 1: 223. 
  2. ^ Solovay, R. M.; Tennenbaum, S. (1971). “Iterated Cohen extensions and Souslin's problem”. Ann. Of Math. (2) (Annals of Mathematics) 94 (2): 201–245. doi:10.2307/1970860. JSTOR 1970860. 

外部リンク


「Suslin's problem」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Suslin's problem」の関連用語

Suslin's problemのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Suslin's problemのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのススリンの問題 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS