カプセル化細胞とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > カプセル化細胞の意味・解説 

カプセル化細胞

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/10/22 02:20 UTC 版)

カプセル化細胞(カプセルかさいぼう)は、ポリマーの半透膜で包まれた細胞を指す。 細胞のマイクロカプセル化技術は、ポリマーの半透膜で細胞を包み、細胞の移動を制限する技術である。その半透膜は、細胞代謝に必須の酸素、栄養素、成長因子などの分子の双方向の拡散は可能で、廃棄物および細胞が分泌する治療のためのタンパク質の外側への拡散は可能なものを使用する。同時に、膜は、カプセル内の細胞が外来の物質と認識され、免疫細胞や抗体によって、破壊されるのを防ぐ。


  1. ^ Bisceglie V (1993). “Uber die antineoplastische Immunität; heterologe Einpflanzung von Tumoren in Hühner-embryonen”. Zeitschrift für Krebsforschung 40: 122–140. doi:10.1007/bf01636399. 
  2. ^ a b Chang TM (October 1964). “Semipermeable microcapsules”. Science 146 (3643): 524–5. doi:10.1126/science.146.3643.524. PMID 14190240. 
  3. ^ a b “Microencapsulated islets as bioartificial endocrine pancreas”. Science 210 (4472): 908–10. (November 1980). doi:10.1126/science.6776628. PMID 6776628. 
  4. ^ a b Löhr, M; Bago, ZT; Bergmeister, H; Ceijna, M; Freund, M; Gelbmann, W; Günzburg, WH; Jesnowski, R et al. (April 1999). “Cell therapy using microencapsulated 293 cells transfected with a gene construct expressing CYP2B1, an ifosfamide converting enzyme, instilled intra-arterially in patients with advanced-stage pancreatic carcinoma: a phase I/II study.”. Journal of molecular medicine (Berlin, Germany) 77 (4): 393–8. doi:10.1007/s001090050366. PMID 10353444. 
  5. ^ Löhr, M (May 19, 2001). “Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma.”. Lancet 357 (9268): 1591–2. doi:10.1016/S0140-6736(00)04749-8. PMID 11377651. 
  6. ^ Lohr, M (2003). “Safety, feasibility and clinical benefit of localized chemotherapy using microencapsulated cells for inoperable pancreatic carcinoma in a phase I/II trial”. Cancer Therapy 1: 121–31. 
  7. ^ a b “Cell microencapsulation technology: towards clinical application”. J Control Release 132 (2): 76–83. (December 2008). doi:10.1016/j.jconrel.2008.08.010. PMID 18789985. 
  8. ^ “Development of mammalian cell-enclosing subsieve-size agarose capsules (<100 microm) for cell therapy”. Biomaterials 26 (23): 4786–92. (August 2005). doi:10.1016/j.biomaterials.2004.11.043. PMID 15763258. 
  9. ^ “Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules”. Biotechnol. Bioeng. 88 (6): 740–9. (December 2004). doi:10.1002/bit.20264. PMID 15532084. 
  10. ^ a b “Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina”. J. Gen. Microbiol. 125 (1): 217–20. (July 1981). doi:10.1099/00221287-125-1-217. PMID 6801192. 
  11. ^ “Induction of cytokine production from human monocytes stimulated with alginate”. J. Immunother. 10 (4): 286–91. (August 1991). doi:10.1097/00002371-199108000-00007. PMID 1931864. 
  12. ^ “The involvement of CD14 in stimulation of cytokine production by uronic acid polymers”. Eur. J. Immunol. 23 (1): 255–61. (January 1993). doi:10.1002/eji.1830230140. PMID 7678226. 
  13. ^ “An immunologic basis for the fibrotic reaction to implanted microcapsules”. Transplant. Proc. 23 (1 Pt 1): 758–9. (February 1991). PMID 1990681. 
  14. ^ “The effect of capsule composition on the biocompatibility of alginate-poly-l-lysine capsules”. J Microencapsul 8 (2): 221–33. (1991). doi:10.3109/02652049109071490. PMID 1765902. 
  15. ^ a b c “Biocompatibility of alginate-poly-l-lysine microcapsules for cell therapy”. Biomaterials 27 (20): 3691–700. (July 2006). doi:10.1016/j.biomaterials.2006.02.048. PMID 16574222. 
  16. ^ “Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules”. Biomaterials 18 (3): 273–8. (February 1997). doi:10.1016/S0142-9612(96)00135-4. PMID 9031730. 
  17. ^ De Vos, Paul; R. van Schifgaarde (September 1999). “Biocompatibility issues”. In Kühtreiber, Willem M.; Lanza, Robert P.; Chick, William L.. Cell Encapsulation Technology and Therapeutics. Birkhäuser Boston. ISBN 978-0-8176-4010-1 
  18. ^ “Evaluation of alginate purification methods: effect on polyphenol, endotoxin, and protein contamination”. J Biomed Mater Res A 76 (2): 243–51. (February 2006). doi:10.1002/jbm.a.30541. PMID 16265647. 
  19. ^ “Impact of residual contamination on the biofunctional properties of purified alginates used for cell encapsulation”. Biomaterials 27 (8): 1296–305. (March 2006). doi:10.1016/j.biomaterials.2005.08.027. PMID 16154192. 
  20. ^ “Improvement of the biocompatibility of alginate/poly-l-lysine/alginate microcapsules by the use of epimerized alginate as a coating”. J Biomed Mater Res A 64 (3): 533–9. (March 2003). doi:10.1002/jbm.a.10276. PMID 12579568. 
  21. ^ “Microcapsules made by enzymatically tailored alginate”. J Biomed Mater Res A 64 (3): 540–50. (March 2003). doi:10.1002/jbm.a.10337. PMID 12579569. 
  22. ^ “Alginate type and RGD density control myoblast phenotype”. Journal of Biomedical Materials Research 60 (2): 217–223. (2002). doi:10.1002/jbm.1287. 
  23. ^ “Quantifying the relation between bond number and myoblast proliferation”. Faraday Discussions 139: 57-30. (2008). doi:10.1039/B719928G. 
  24. ^ “Cell encapsulation: promise and progress”. Nat. Med. 9 (1): 104–7. (January 2003). doi:10.1038/nm0103-104. PMID 12514721. 
  25. ^ “Poly-l-lysine induces fibrosis on alginate microcapsules via the induction of cytokines”. Cell Transplant 10 (3): 263–75. (2001). PMID 11437072. 
  26. ^ “Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians”. Annals of the New York Academy of Sciences 875: 219–32. (June 1999). doi:10.1111/j.1749-6632.1999.tb08506.x. PMID 10415570. 
  27. ^ a b “An encapsulation system for the immunoisolation of pancreatic islets”. Nat. Biotechnol. 15 (4): 358–62. (April 1997). doi:10.1038/nbt0497-358. PMID 9094138. 
  28. ^ “In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure”. Biotechnol. Lett. 27 (5): 317–22. (March 2005). doi:10.1007/s10529-005-0687-3. PMID 15834792. 
  29. ^ “Biomineralized polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors”. Advanced Functional Materials 15 (6): 917–923. (April 2005). doi:10.1002/adfm.200400322. 
  30. ^ a b “Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy”. Cell Biochem. Biophys. 47 (1): 159–68. (2007). doi:10.1385/cbb:47:1:159. PMID 17406068. 
  31. ^ “The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria”. International Dairy Journal 14 (8): 737–743. (August 2004). doi:10.1016/j.idairyj.2004.01.004. 
  32. ^ “collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy”. Med Biol Eng Comput 38 (2): 211–8. (March 2000). doi:10.1007/bf02344779. PMID 10829416. 
  33. ^ “Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications”. Adv. Drug Deliv. Rev. 59 (4-5): 207–33. (May 2007). doi:10.1016/j.addr.2007.03.012. PMID 17482309. 
  34. ^ “Axonal regrowth through collagen tubes bridging the spinal cord to nerve roots”. J. Neurosci. Res. 49 (4): 425–32. (August 1997). doi:10.1002/(SICI)1097-4547(19970815)49:4<425::AID-JNR4>3.0.CO;2-A. PMID 9285519. 
  35. ^ “Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering”. Adv. Drug Deliv. Rev. 59 (4-5): 249–62. (May 2007). doi:10.1016/j.addr.2007.03.015. PMID 17482310. 
  36. ^ “Gelatin as a delivery vehicle for the controlled release of bioactive molecules”. J Control Release 109 (1-3): 256–74. (December 2005). doi:10.1016/j.jconrel.2005.09.023. PMID 16266768. 
  37. ^ “Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats”. J. Biomed. Mater. Res. 62 (2): 185–94. (November 2002). doi:10.1002/jbm.10267. PMID 12209938. 
  38. ^ “chitosan microcapsules as controlled release systems for insulin”. J Microencapsul 14 (5): 567–76. (1997). doi:10.3109/02652049709006810. PMID 9292433. 
  39. ^ “Biological activity of chitosan: ultrastructural study”. Biomaterials 9 (3): 247–52. (May 1988). doi:10.1016/0142-9612(88)90092-0. PMID 3408796. 
  40. ^ “Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications”. J Mater Sci Mater Med 21 (7): 2227–36. (July 2010). doi:10.1007/s10856-010-4065-x. PMID 20372985. 
  41. ^ “Evaluation of nanostructured composite collagen--chitosan matrices for tissue engineering”. Tissue Eng. 7 (2): 203–10. (April 2001). doi:10.1089/107632701300062831. PMID 11304455. 
  42. ^ a b c Venkat Chokkalingam, Jurjen Tel, Florian Wimmers, Xin Liu, Sergey Semenov, Julian Thiele, Carl G. Figdor, Wilhelm T.S. Huck, Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics, Lab on a Chip, 13, 4740-4744, 2013, DOI: 10.1039/C3LC50945A, http://pubs.rsc.org/en/content/articlelanding/2013/lc/c3lc50945a#!divAbstract
  43. ^ “Self-assembly and mineralization of peptide-amphiphile nanofibers”. Science 294 (5547): 1684–8. (November 2001). doi:10.1126/science.1063187. PMID 11721046. 
  44. ^ Dautzenberg, H (Jun 18, 1999). “Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications.”. Annals of the New York Academy of Sciences 875: 46–63. doi:10.1111/j.1749-6632.1999.tb08493.x. PMID 10415557. 
  45. ^ a b Pelegrin, M; Marin, M; Noël, D; Del Rio, M; Saller, R; Stange, J; Mitzner, S; Günzburg, WH et al. (June 1998). “Systemic long-term delivery of antibodies in immunocompetent animals using cellulose sulphate capsules containing antibody-producing cells.”. Gene therapy 5 (6): 828–34. doi:10.1038/sj.gt.3300632. PMID 9747463. 
  46. ^ a b Pelegrin, M; Marin, M; Oates, A; Noël, D; Saller, R; Salmons, B; Piechaczyk, M (Jul 1, 2000). “Immunotherapy of a viral disease by in vivo production of therapeutic monoclonal antibodies.”. Human gene therapy 11 (10): 1407–15. doi:10.1089/10430340050057486. PMID 10910138. 
  47. ^ Armeanu, S (Jul–Aug 2001). “In vivo perivascular implantation of encapsulated packaging cells for prolonged retroviral gene transfer.”. Journal of microencapsulation 18 (4): 491–506. doi:10.1080/02652040010018047. PMID 11428678. 
  48. ^ Winiarczyk, S (September 2002). “A clinical protocol for treatment of canine mammary tumors using encapsulated, cytochrome P450 synthesizing cells activating cyclophosphamide: a phase I/II study.”. Journal of molecular medicine (Berlin, Germany) 80 (9): 610–4. doi:10.1007/s00109-002-0356-0. PMID 12226743. 
  49. ^ Salmons, B (2007). “GMP production of an encapsulated cell therapy product: issues and considerations”. BioProcessing Journal 6 (2): 37–44. http://www.bioprocessingjournal.com/index.php/past-issues?start=6. 
  50. ^ Rabanel, Michel; Nicolas Bertrand; Shilpa Sant; Salma Louati; Patrice Hildgen (June 2006). “Polysaccharide Hydrogels for the Preparation of Immunoisolated Cell Delivery Systems”. ACS Symposium Series, Vol. 934. American Chemical Society. pp. 305–309. ISBN 978-0-8412-3960-9 
  51. ^ a b “Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells”. Nat Mater 7 (10): 816–23. (October 2008). doi:10.1038/nmat2269. PMC 2929915. PMID 18724374. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929915/. 
  52. ^ a b “Bioactive cell-hydrogel microcapsules for cell-based drug delivery”. J Control Release 135 (3): 203–10. (May 2009). doi:10.1016/j.jconrel.2009.01.005. PMID 19344677. 
  53. ^ “Zeta-potentials of alginate-PLL capsules: a predictive measure for biocompatibility?”. J Biomed Mater Res A 80 (4): 813–9. (March 2007). doi:10.1002/jbm.a.30979. PMID 17058213. 
  54. ^ a b “History, challenges and perspectives of cell microencapsulation”. Trends Biotechnol. 22 (2): 87–92. (February 2004). doi:10.1016/j.tibtech.2003.11.004. PMID 14757043. 
  55. ^ a b c “Progress technology in microencapsulation methods for cell therapy”. Biotechnol. Prog. 25 (4): 946–63. (2009). doi:10.1002/btpr.226. PMID 19551901. 
  56. ^ “Technology of mammalian cell encapsulation”. Adv. Drug Deliv. Rev. 42 (1-2): 29–64. (August 2000). doi:10.1016/S0169-409X(00)00053-3. PMID 10942814. 
  57. ^ “Mathematical modelling of immobilized animal cell growth”. Artif Cells Blood Substit Immobil Biotechnol 23 (1): 109–33. (1995). doi:10.3109/10731199509117672. PMID 7719442. 
  58. ^ “Investigation of microencapsulated BSH active Lactobacillus in the simulated human GI tract”. J. Biomed. Biotechnol. 2007 (7): 13684. (2007). doi:10.1155/2007/13684. PMC 2217584. PMID 18273409. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217584/. 
  59. ^ “Investigation of genipin Cross-Linked Microcapsule for oral Delivery of Live bacterial Cells and Other Biotherapeutics: Preparation and In Vitro Analysis in Simulated Human Gastrointestinal Model”. International Journal of Polymer Science 2010: 1–10. (2010). doi:10.1155/2010/985137. 
  60. ^ “Biocompatibility of subsieve-size capsules versus conventional-size microcapsules”. J Biomed Mater Res A 78 (2): 394–8. (August 2006). doi:10.1002/jbm.a.30676. PMID 16680700. 
  61. ^ “Size control of calcium alginate beads containing living cells using micro-nozzle array”. Biomaterials 26 (16): 3327–31. (June 2005). doi:10.1016/j.biomaterials.2004.08.029. PMID 15603828. 
  62. ^ “Microencapsulation: a review of polymers and technologies with a focus on bioartificial organs”. Polimery 43: 530–539. (1998). 
  63. ^ a b “Cell microencapsulation technology for biomedical purposes: novel insights and challenges”. Trends Pharmacol. Sci. 24 (5): 207–10. (May 2003). doi:10.1016/S0165-6147(03)00073-7. PMID 12767713. 
  64. ^ “Xenotransplantation: is the risk of viral infection as great as we thought?”. Mol Med Today 6 (5): 199–208. (May 2000). doi:10.1016/s1357-4310(00)01708-1. PMID 10782067. 
  65. ^ Hunkeler D (November 2001). “Allo transplants xeno: as bioartificial organs move to the clinic. Introduction”. Annals of the New York Academy of Sciences 944: 1–6. doi:10.1111/j.1749-6632.2001.tb03818.x. PMID 11797662. 
  66. ^ a b “Development of engineered cells for implantation in gene therapy”. Adv. Drug Deliv. Rev. 33 (1-2): 31–43. (August 1998). doi:10.1016/S0169-409X(98)00018-0. PMID 10837651. 
  67. ^ “Causes of limited survival of microencapsulated pancreatic islet grafts”. J. Surg. Res. 121 (1): 141–50. (September 2004). doi:10.1016/j.jss.2004.02.018. PMID 15313388. 
  68. ^ “Biocompatibility and function of microencapsulated pancreatic islets”. Acta Biomater 2 (2): 221–7. (March 2006). doi:10.1016/j.actbio.2005.12.002. PMID 16701881. 
  69. ^ “Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steroids”. Biomaterials 26 (15): 2353–60. (May 2005). doi:10.1016/j.biomaterials.2004.07.017. PMID 15585238. 
  70. ^ “Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy”. FASEB J. 24 (1): 22–31. (January 2010). doi:10.1096/fj.09-131888. PMID 19726759. 
  71. ^ “Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures”. International Dairy Journal 7 (1): 31–41. (January 1997). doi:10.1016/S0958-6946(96)00046-5. 
  72. ^ “Effect of whey protein concentrate on the survival of lactobacillus acidophilus in lactose hydrolysed yoghurt during refrigerated storage”. Milchwissenschaft 51: 565–569. (1996). 
  73. ^ “Survival of Bifidobacteria during refrigerated storage in the presence of acid and hydrogen peroxide”. Milchwissenschaft 51: 65–70. (1996). 
  74. ^ “Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria”. FAO/WHO Experts’ Report (FAQ/WHO) 
  75. ^ Gilliland SE (October 1989). “Acidophilus milk products: a review of potential benefits to consumers”. J. Dairy Sci. 72 (10): 2483–94. doi:10.3168/jds.S0022-0302(89)79389-9. PMID 2513349. 
  76. ^ “Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery”. Trends in Food Science & Technology 18 (5): 240–251. (May 2007). doi:10.1016/j.tifs.2007.01.004. 
  77. ^ “The bioartificial pancreas: progress and challenges”. Diabetes Technol. Ther. 7 (6): 968–85. (December 2005). doi:10.1089/dia.2005.7.968. PMID 16386103. 
  78. ^ “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen”. N. Engl. J. Med. 343 (4): 230–8. (July 2000). doi:10.1056/NEJM200007273430401. PMID 10911004. 
  79. ^ “Improved post-cryopreservation recovery following encapsulation of islets in chitosan-alginate microcapsules”. Transplant. Proc. 32 (4): 824–5. (June 2000). doi:10.1016/s0041-1345(00)00995-7. PMID 10856598. 
  80. ^ “In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized polyethylene glycol diacrylate membranes”. Cell Transplant 8 (3): 293–306. (1999). PMID 10442742. 
  81. ^ “Protection of NOD islet isograft from autoimmune destruction by agarose microencapsulation”. Transplant. Proc. 35 (1): 484–5. (February 2003). doi:10.1016/S0041-1345(02)03829-0. PMID 12591496. 
  82. ^ Clinical trial information”. 2010年11月21日閲覧。
  83. ^ “Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation”. Xenotransplantation 14 (2): 157–61. (March 2007). doi:10.1111/j.1399-3089.2007.00384.x. PMID 17381690. 
  84. ^ Grose S (April 2007). “Critics slam Russian trial to test pig pancreas for diabetics”. Nat. Med. 13 (4): 390–1. doi:10.1038/nm0407-390b. PMID 17415358. 
  85. ^ “Considerations for successful transplantation of encapsulated pancreatic islets”. Diabetologia 45 (2): 159–73. (February 2002). doi:10.1007/s00125-001-0729-x. PMID 11935147. 
  86. ^ Stadlbauer, V (July 2006). “Morphological and functional characterization of a pancreatic beta-cell line microencapsulated in sodium cellulose sulfate/poly(diallyldimethylammonium chloride).”. Xenotransplantation 13 (4): 337–44. doi:10.1111/j.1399-3089.2006.00315.x. PMID 16768727. 
  87. ^ Steigler, P (2009). “Xenotransplantation of NaCS microencapsulated porcine islet cells in diabetic rats”. Organ Biology 16 (1): 104. https://mol.medicalonline.jp/archive/search?jo=ca3organ&ye=2009&vo=16&issue=1. 
  88. ^ “A novel approach to tumor suppression with microencapsulated recombinant cells”. Hum. Gene Ther. 13 (10): 1157–66. (July 2002). doi:10.1089/104303402320138943. PMID 12133269. 
  89. ^ “Continuous release of endostatin from microencapsulated engineered cells for tumor therapy”. Nat. Biotechnol. 19 (1): 35–9. (January 2001). doi:10.1038/83481. PMID 11135549. 
  90. ^ “Local endostatin treatment of gliomas administered by microencapsulated producer cells”. Nat. Biotechnol. 19 (1): 29–34. (January 2001). doi:10.1038/83471. PMID 11135548. 
  91. ^ “Inhibition of tumor growth in mice by endostatin derived from abdominal transplanted encapsulated cells”. Acta Biochim. Biophys. Sin. (Shanghai) 39 (4): 278–84. (April 2007). doi:10.1111/j.1745-7270.2007.00273.x. PMID 17417683. 
  92. ^ “Antiangiogenic cancer therapy with microencapsulated cells”. Hum. Gene Ther. 14 (11): 1065–77. (July 2003). doi:10.1089/104303403322124783. PMID 12885346. 
  93. ^ “Intratumoral injection of encapsulated cells producing an oxazaphosphorine activating cytochrome P450 for targeted chemotherapy”. Adv. Exp. Med. Biol. 451: 97–106. (1998). doi:10.1007/978-1-4615-5357-1_16. PMID 10026857. 
  94. ^ “Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma”. Lancet 357 (9268): 1591–2. (May 2001). doi:10.1016/S0140-6736(00)04749-8. PMID 11377651. 
  95. ^ “Safety, feasibility and clinical benefit of localized chemotherapy using microencapsulated cells for inoperable pancreatic carcinoma in a phase I/II trial”. Ccancer Ther 1: 121–131. (2003). 
  96. ^ Lam, P (March 2013). “The innovative evolution of cancer gene and cellular therapies.”. Cancer gene therapy 20 (3): 141–9. doi:10.1038/cgt.2012.93. PMID 23370333. 
  97. ^ “Cell therapy in myocardial infarction”. Cardiovasc Revasc Med 8 (1): 43–51. (2007). doi:10.1016/j.carrev.2006.11.005. PMID 17293268. 
  98. ^ “Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy”. Regen Med 4 (5): 733–45. (September 2009). doi:10.2217/rme.09.43. PMID 19761398. 
  99. ^ Madeddu P (May 2005). “Therapeutic angiogenesis and vasculogenesis for tissue regeneration”. Exp. Physiol. 90 (3): 315–26. doi:10.1113/EXPPHYSIOL.2004.028571. PMID 15778410. 
  100. ^ Jacobs J (December 2007). “Combating cardiovascular disease with angiogenic therapy”. Drug Discov. Today 12 (23-24): 1040–5. doi:10.1016/j.drudis.2007.08.018. PMID 18061883. 
  101. ^ a b “Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function”. Gene Ther. 15 (1): 40–8. (January 2008). doi:10.1038/sj.gt.3303049. PMID 17943144. 
  102. ^ Bonavita, AG (May–June 2010). “Hepatocyte xenotransplantation for treating liver disease”. Xenotransplantation 17 (3): 181–187. doi:10.1111/j.1399-3089.2010.00588.x. PMID 20636538. 
  103. ^ Lysaght, Micheal J. (April 1999). “Encapsulated Cells as Therapy”. Scientific American: 76–82. 


「カプセル化細胞」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「カプセル化細胞」の関連用語

カプセル化細胞のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



カプセル化細胞のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのカプセル化細胞 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS