行列
(行列 (数学) から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/06 03:34 UTC 版)
数学の線型代数学周辺分野における行列(ぎょうれつ、英: matrix)は、数や記号や式などを縦と横に矩形状に配列したものである。
概要
行・列
横に並んだ一筋を行(row)、縦に並んだ一筋を列(column)と呼ぶ。
例えば、下記のような行列
行列の積を初めて定義したのはケイリーである。行列の積は狭い意味での二項演算(即ち、台とする集合 X に対して X × X → X なる写像を定めるもの)ではない。l × m 行列 A と m × n 行列 B の積は l × n 行列となり、C = A B の (i, j) 成分 ci j は、
-
2 × 2 行列は、単位正方形を平行四辺形に変形することに対応する。 行列とその乗法は、これを一次変換(つまり線型写像)と関連付けるとき、その本質的な特徴が浮き彫りになる。
- 線型写像の行列表現
- m × n 行列 A から線型写像 Rn → Rm が各ベクトル x ∈ Rn を行列としての積 Ax ∈ Rm へ写すものとして定まる。逆に、各線型写像 f: Rn → Rm を生じる m × n 行列 A は一意的に決まる。陽に書けば、A の (i, j)-成分は、f(ej) の第 i-成分である。ただし ej = (0, …, 0, 1, 0, …, 0) は第 j-成分だけが 1 で他が全部 0 の単位ベクトルである。
このとき、行列 A は線型写像 f を表現すると言い、A を f の変換行列または表現行列と呼ぶ。
例えば 2 × 2 行列
-
図のような無向グラフの隣接行列は カテゴリ
- 行列 (数学)のページへのリンク