決定性公理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 決定性公理の意味・解説 

決定性公理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/11/15 04:11 UTC 版)

決定性公理(けっていせいこうり、: axiom of determinacyAD と略される)とは、1962年にヤン・ミシェルスキー英語版フーゴ・シュタインハウスによって提案された集合論の公理である。もとの決定性公理はゲーム理論に言及し、可算無限の長さをもったある特定の二人位相的な完全情報ゲーム英語版について(後述)、どちらかのプレイヤーは必ず必勝法を持つことを主張する。

決定性公理は公理的集合論の選択公理と矛盾する。決定性公理を仮定すると、実数の任意の部分集合について「ルベーグ可測である」「ベールの性質を持つ」「完全集合性を持つ」ことが従う。とくに実数の任意の部分集合が完全集合性を持つことは「実数の部分集合で非可算なものは実数と同じ濃度を持つ」という弱い形の連続体仮説が成り立つことに換言される。 選択公理からは「実数の部分集合でルベーグ可測でないものが存在する」ことが導かれるが、この事実からも決定性公理と選択公理が相容れないことが分かる。

スタインハウスとミシェルスキーが AD を考えた動機はその帰結の興味深さ、そして集合論の最小の自然なモデル L(R) において成り立ちうることにあった。これは選択公理 (AC) の弱い形のみを許容し、全ての実数と全ての順序数を含むものである。AD からのいくつかの帰結はステファン・バナフとスタニスワフ・マズールとモートン・デイビスによってそれまでに得られていた定理から従う。 ミシェルスキーとStanisław Świerczkowskiは次の事実の研究に貢献した: AD は実数からなる集合が全てルベーグ可測であることを導く。 続いて、ドナルド・A・マーティン などによって特に記述集合論において、さらなる重要な結論が得られている。1988年には、ジョン・R・スティール and ヒュー・ウッディン が長期研究の結果を報告している。彼らは カテゴリ




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「決定性公理」の関連用語

決定性公理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



決定性公理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの決定性公理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS