外接円の半径とは? わかりやすく解説

外接円の半径

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/20 03:44 UTC 版)

外接円」の記事における「外接円の半径」の解説

外接円の半径は以下のような式で表されるR = a b c ( a + b + c ) ( − a + b + c ) ( a − b + c ) ( a + b − c ) {\displaystyle R={\frac {abc}{\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}}} R = a b c 4 r s {\displaystyle R={\frac {abc}{4rs}}} (p.189,#298(d)) R = r cosA + cosB + cos ⁡ C − 1 {\displaystyle R={\frac {r}{\cos A+\cos B+\cos C-1}}} ここで、a,b,c は3辺の長さ、A,B,C は3つの角の大きさ、r は内接円半径、s は周長半分意味する

※この「外接円の半径」の解説は、「外接円」の解説の一部です。
「外接円の半径」を含む「外接円」の記事については、「外接円」の概要を参照ください。

ウィキペディア小見出し辞書の「外接円の半径」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「外接円の半径」の関連用語

外接円の半径のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



外接円の半径のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの外接円 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS