ゼロ点
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/14 15:01 UTC 版)
「フルヴィッツのゼータ函数」の記事における「ゼロ点」の解説
q = 1 であれば、フルヴィッツのゼータ函数はリーマンゼータ函数自体となり、q = 1/2 であれば、リーマンゼータ函数に複素変数 x の単純な函数をかけたものとなる(上記参照)。どちらの場合も、リーマンゼータ函数のゼロ点の難しい研究へ繋がっている。特に、実部が 1 よりも大きなところにはゼロ点は存在しない。しかし、0 < q < 1 で、かつ q ≠ 1/2 であれば、フルヴィッツのゼータ函数は任意の正の実数 ε に対し帯状領域 1 < Re(s) < 1+ε でゼロ点を持つ。このことは、q が有理数の場合と非代数的な無理数の場合に、ハロルド・ダヴェンポート(Harold Davenport) とハンス・ハイルブロン(英語版)(Hans Heilbronn) により証明され、代数的な無理数 q に対しては、J. W. S. キャスルズ(英語版)(J. W. S. Cassels) により証明された 。
※この「ゼロ点」の解説は、「フルヴィッツのゼータ函数」の解説の一部です。
「ゼロ点」を含む「フルヴィッツのゼータ函数」の記事については、「フルヴィッツのゼータ函数」の概要を参照ください。
- ゼロ点のページへのリンク