エルミート多様体
(エルミート計量 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/20 05:50 UTC 版)
ナビゲーションに移動 検索に移動![]() | 原文と比べた結果、この記事には多数(少なくとも5個以上)の誤訳があることが判明しています。情報の利用には注意してください。 |
数学における エルミート多様体(英語: Hermitian manifold)とはリーマン多様体の複素微分幾何における類似である。より正確には、エルミート多様体とは、各点の正則接空間にエルミート内積を持ち、それらが滑らかに変化する複素多様体のことを指す。また、エルミート多様体を複素構造を保つリーマン計量を持つ実多様体として定義することもできる。
複素構造は、本質的には可積分条件をもつ概複素構造であり、この条件は多様体上にユニタリ構造(U(n)-構造(U(n) structure))をもたらす。可積分条件を落とすと、概エルミート多様体を得る。
任意の概エルミート多様体上に、計量と概複素構造にのみ依存する基本2形式(fundamental 2-form)と呼ばれる微分形式を定めることができる。基本2形式は常に非退化である。これが閉形式である(すなわちシンプレクティック形式である)という追加の可積分条件を課すことにより、概ケーラー構造(almost Kähler structure)を得る。もし概複素構造と基本2形式の両方が可積分であれば、 ケーラー構造を持つ。
形式的定義
滑らかな多様体(smooth manifold)
- エルミート多様体のページへのリンク