医薬品設計とは? わかりやすく解説

医薬品設計

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/08 09:26 UTC 版)

医薬品設計(いやくひんせっけい、英: Drug design; ドラッグデザイン)とは、生物学的標的の知識に基づいて新しい薬物を見出す創意に富んだ手法である[1]。しばしば合理的医薬品設計または単に合理的設計とも呼ばれる。薬物は、タンパク質などの生体分子の機能を活性化または阻害する有機低分子が最も一般的であり、これにより患者治療効果英語版をもたらす。最も基本的な意味での医薬品設計は、相互作用する生体分子標的と相補的な形状と電荷を持ち、標的に結合する分子を設計することを含む。その他にも、通常の経路を強化するために、病気の場合に影響を受けているであろう特定の分子の働きを促進する方法もある。


  1. ^ Madsen, Ulf; Krogsgaard-Larsen, Povl; Liljefors, Tommy (2002). Textbook of Drug Design and Discovery. Washington, DC: Taylor & Francis. ISBN 978-0-415-28288-8 
  2. ^ a b c Drug Design: Structure- and Ligand-Based Approaches (1 ed.). Cambridge, UK: Cambridge University Press. (2010). ISBN 978-0521887236 
  3. ^ a b Fosgerau, Keld; Hoffmann, Torsten (2015-01-01). “Peptide therapeutics: current status and future directions” (英語). Drug Discovery Today 20 (1): 122–128. doi:10.1016/j.drudis.2014.10.003. ISSN 1359-6446. PMID 25450771. 
  4. ^ a b Ciemny, Maciej; Kurcinski, Mateusz; Kamel, Karol; Kolinski, Andrzej; Alam, Nawsad; Schueler-Furman, Ora; Kmiecik, Sebastian (2018-05-04). “Protein–peptide docking: opportunities and challenges” (英語). Drug Discovery Today 23 (8): 1530–1537. doi:10.1016/j.drudis.2018.05.006. ISSN 1359-6446. PMID 29733895. 
  5. ^ Shirai H, Prades C, Vita R, Marcatili P, Popovic B, Xu J, Overington JP, Hirayama K, Soga S, Tsunoyama K, Clark D, Lefranc MP, Ikeda K (Nov 2014). “Antibody informatics for drug discovery”. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1844 (11): 2002–2015. doi:10.1016/j.bbapap.2014.07.006. PMID 25110827. 
  6. ^ Tollenaere JP (Apr 1996). “The role of structure-based ligand design and molecular modelling in drug discovery”. Pharmacy World & Science 18 (2): 56–62. doi:10.1007/BF00579706. PMID 8739258. 
  7. ^ Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015). “An analysis of the attrition of drug candidates from four major pharmaceutical companies”. Nature Reviews Drug Discovery 14 (7): 475–86. doi:10.1038/nrd4609. PMID 26091267. 
  8. ^ Yu H, Adedoyin A (Sep 2003). “ADME-Tox in drug discovery: integration of experimental and computational technologies”. Drug Discovery Today 8 (18): 852–61. doi:10.1016/S1359-6446(03)02828-9. PMID 12963322. 
  9. ^ Dixon SJ, Stockwell BR (Dec 2009). “Identifying druggable disease-modifying gene products”. Current Opinion in Chemical Biology 13 (5–6): 549–55. doi:10.1016/j.cbpa.2009.08.003. PMC 2787993. PMID 19740696. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787993/. 
  10. ^ Imming P, Sinning C, Meyer A (Oct 2006). “Drugs, their targets and the nature and number of drug targets”. Nature Reviews. Drug Discovery 5 (10): 821–34. doi:10.1038/nrd2132. PMID 17016423. 
  11. ^ Anderson AC (Sep 2003). “The process of structure-based drug design”. Chemistry & Biology 10 (9): 787–97. doi:10.1016/j.chembiol.2003.09.002. PMID 14522049. 
  12. ^ Recanatini M, Bottegoni G, Cavalli A (Dec 2004). “In silico antitarget screening”. Drug Discovery Today: Technologies 1 (3): 209–15. doi:10.1016/j.ddtec.2004.10.004. PMID 24981487. 
  13. ^ Wu-Pong, Susanna; Rojanasakul, Yongyut (2008). Biopharmaceutical drug design and development (2nd ed.). Totowa, NJ Humana Press: Humana Press. ISBN 978-1-59745-532-9 
  14. ^ Scomparin A, Polyak D, Krivitsky A, Satchi-Fainaro R (Apr 2015). “Achieving successful delivery of oligonucleotides - From physico-chemical characterization to in vivo evaluation”. Biotechnology Advances 33 (6): 1294–309. doi:10.1016/j.biotechadv.2015.04.008. PMID 25916823. 
  15. ^ Ganellin, C. Robin; Jefferis, Roy; Roberts, Stanley M. (2013). “The small molecule drug discovery process — from target selection to candidate selection”. Introduction to Biological and Small Molecule Drug Research and Development: theory and case studies. Elsevier. ISBN 9780123971760. https://books.google.com/books?id=342JY314Fl4C&pg=PA83&dq=target+validation+disease+linkage#v=onepage 
  16. ^ a b c Yuan Y, Pei J, Lai L (Dec 2013). “Binding site detection and druggability prediction of protein targets for structure-based drug design”. Current Pharmaceutical Design 19 (12): 2326–33. doi:10.2174/1381612811319120019. PMID 23082974. 
  17. ^ Rishton GM (Jan 2003). “Nonleadlikeness and leadlikeness in biochemical screening”. Drug Discovery Today 8 (2): 86–96. doi:10.1016/s1359644602025722. PMID 12565011. 
  18. ^ Hopkins AL (2011). “Chapter 25: Pharmacological space”. In Wermuth CG. The Practice of Medicinal Chemistry (3 ed.). Academic Press. pp. 521–527. ISBN 978-0-12-374194-3. https://books.google.com/books?id=Qmt1_DQkCpEC&pg=PA527&dq=druggability+Lipinski%27s+Rule+of+Five+lipophilic+efficiency#v=onepage 
  19. ^ Nicolaou CA, Brown N (Sep 2013). “Multi-objective optimization methods in drug design”. Drug Discovery Today: Technologies 10 (3): 427–35. doi:10.1016/j.ddtec.2013.02.001. PMID 24050140. 
  20. ^ Kirchmair J (2014). Drug Metabolism Prediction. Wiley's Methods and Principles in Medicinal Chemistry. 63. Wiley-VCH. ISBN 978-3-527-67301-8 
  21. ^ Ban TA (2006). “The role of serendipity in drug discovery”. Dialogues in Clinical Neuroscience 8 (3): 335–44. PMC 3181823. PMID 17117615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181823/. 
  22. ^ Ethiraj, Sendil K.; Levinthal, Daniel (Sep 2004). “Bounded Rationality and the Search for Organizational Architecture: An Evolutionary Perspective on the Design of Organizations and Their Evolvability”. Administrative Science Quarterly (Sage Publications, Inc. on behalf of the Johnson Graduate School of Management, Cornell University) 49 (3): 404–437. JSTOR 4131441. SSRN 604123. 
  23. ^ Lewis, Richard A. (2011). “Chapter 4: The Development of Molecular Modelling Programs: The Use and Limitations of Physical Models”. Drug Design Strategies: Quantitative Approaches. RSC Drug Discovery. Royal Society of Chemistry. pp. 88–107. doi:10.1039/9781849733410-00088. ISBN 978-1849731669 
  24. ^ Ghasemi, Pérez-Sánchez; Mehri, fassihi (2018). “Deep neural network in QSAR studies using deep belief network”. Applied Soft Computing 62: 251–259. doi:10.1016/j.asoc.2017.09.040. 
  25. ^ Rajamani R, Good AC (May 2007). “Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development”. Current Opinion in Drug Discovery & Development 10 (3): 308–15. PMID 17554857. 
  26. ^ de Azevedo WF, Dias R (Dec 2008). “Computational methods for calculation of ligand-binding affinity”. Current Drug Targets 9 (12): 1031–9. doi:10.2174/138945008786949405. PMID 19128212. 
  27. ^ Singh J, Chuaqui CE, Boriack-Sjodin PA, Lee WC, Pontz T, Corbley MJ, Cheung HK, Arduini RM, Mead JN, Newman MN, Papadatos JL, Bowes S, Josiah S, Ling LE (Dec 2003). “Successful shape-based virtual screening: the discovery of a potent inhibitor of the type I TGFbeta receptor kinase (TbetaRI)”. Bioorganic & Medicinal Chemistry Letters 13 (24): 4355–9. doi:10.1016/j.bmcl.2003.09.028. PMID 14643325. 
  28. ^ Becker OM, Dhanoa DS, Marantz Y, Chen D, Shacham S, Cheruku S, Heifetz A, Mohanty P, Fichman M, Sharadendu A, Nudelman R, Kauffman M, Noiman S (Jun 2006). “An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression”. Journal of Medicinal Chemistry 49 (11): 3116–35. doi:10.1021/jm0508641. PMID 16722631. 
  29. ^ Liang S, Meroueh SO, Wang G, Qiu C, Zhou Y (May 2009). “Consensus scoring for enriching near-native structures from protein-protein docking decoys”. Proteins 75 (2): 397–403. doi:10.1002/prot.22252. PMC 2656599. PMID 18831053. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656599/. 
  30. ^ Oda A, Tsuchida K, Takakura T, Yamaotsu N, Hirono S (2006). “Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes”. Journal of Chemical Information and Modeling 46 (1): 380–91. doi:10.1021/ci050283k. PMID 16426072. 
  31. ^ Deng Z, Chuaqui C, Singh J (Jan 2004). “Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions”. Journal of Medicinal Chemistry 47 (2): 337–44. doi:10.1021/jm030331x. PMID 14711306. 
  32. ^ Amari S, Aizawa M, Zhang J, Fukuzawa K, Mochizuki Y, Iwasawa Y, Nakata K, Chuman H, Nakano T (2006). “VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening”. Journal of Chemical Information and Modeling 46 (1): 221–30. doi:10.1021/ci050262q. PMID 16426058. 
  33. ^ Guner, Osman F. (2000). Pharmacophore Perception, Development, and use in Drug Design. La Jolla, Calif: International University Line. ISBN 978-0-9636817-6-8 
  34. ^ Tropsha, Alexander (2010). “QSAR in Drug Discovery”. Drug Design: Structure- and Ligand-Based Approaches (1 ed.). Cambridge, UK: Cambridge University Press. pp. 151–164. ISBN 978-0521887236. https://books.google.com/books?id=EOInhAYMae4C&lpg=PA163&dq=QSAR%20drug%20design&pg=PA151#v=onepage 
  35. ^ Leach, Andrew R.; Harren, Jhoti (2007). Structure-based Drug Discovery. Berlin: Springer. ISBN 978-1-4020-4406-9 
  36. ^ Mauser H, Guba W (May 2008). “Recent developments in de novo design and scaffold hopping”. Current Opinion in Drug Discovery & Development 11 (3): 365–74. PMID 18428090. 
  37. ^ a b Klebe G (2000). “Recent developments in structure-based drug design”. Journal of Molecular Medicine 78 (5): 269–81. doi:10.1007/s001090000084. PMID 10954199. 
  38. ^ Wang R,Gao Y,Lai L (2000). “LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design”. Journal of Molecular Modeling 6 (7–8): 498–516. doi:10.1007/s0089400060498. 
  39. ^ Schneider G, Fechner U (Aug 2005). “Computer-based de novo design of drug-like molecules”. Nature Reviews. Drug Discovery 4 (8): 649–63. doi:10.1038/nrd1799. PMID 16056391. 
  40. ^ Jorgensen WL (Mar 2004). “The many roles of computation in drug discovery”. Science 303 (5665): 1813–8. Bibcode2004Sci...303.1813J. doi:10.1126/science.1096361. PMID 15031495. 
  41. ^ a b Leis S, Schneider S, Zacharias M (2010). “In silico prediction of binding sites on proteins”. Current Medicinal Chemistry 17 (15): 1550–62. doi:10.2174/092986710790979944. PMID 20166931. 
  42. ^ Warren, Gregory L.; Warren, Stelphen D. (2011). “Chapter 16: Scoring Drug-Receptor Interactions”. Drug Design Strategies: Quantitative Approaches. Royal Society of Chemistry. pp. 440–457. doi:10.1039/9781849733410-00440. ISBN 978-1849731669 
  43. ^ Böhm HJ (Jun 1994). “The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure”. Journal of Computer-Aided Molecular Design 8 (3): 243–56. Bibcode1994JCAMD...8..243B. doi:10.1007/BF00126743. PMID 7964925. 
  44. ^ Liu, Jie; Wang, Renxiao (23 March 2015). “Classification of Current Scoring Functions”. Journal of Chemical Information and Modeling 55 (3): 475–482. doi:10.1021/ci500731a. PMID 25647463. 
  45. ^ Ajay, Murcko MA (1995). “Computational methods to predict binding free energy in ligand-receptor complexes”. J. Med. Chem. 38 (26): 4953–67. doi:10.1021/jm00026a001. PMID 8544170. 
  46. ^ Gramatica, Paolo (2011). “Chapter 17: Modeling Chemicals in the Environment”. Drug Design Strategies: Quantitative Approaches. RSC Drug Discovery. Royal Society of Chemistry. p. 466. doi:10.1039/9781849733410-00458. ISBN 978-1849731669. https://books.google.com/books?id=YTguNlEpmnoC&pg=PA466&dq=drug+design+local+global+models&hl=en&sa=X&redir_esc=y#v=onepage&q=drug%20design%20local%20global%20models&f=false 
  47. ^ Greer J, Erickson JW, Baldwin JJ, Varney MD (1994). “Application of the three-dimensional structures of protein target molecules in structure-based drug design”. J. Med. Chem. 37 (8): 1035–1054. doi:10.1021/jm00034a001. PMID 8164249. 
  48. ^ Timmerman, Hendrik; Gubernator, Klaus; Böhm, Hans-Joachim; Mannhold, Raimund; Kubinyi, Hugo (1998). Structure-based Ligand Design (Methods and Principles in Medicinal Chemistry). Weinheim: Wiley-VCH. ISBN 978-3-527-29343-8 
  49. ^ Capdeville R, Buchdunger E, Zimmermann J, Matter A (Jul 2002). “Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug”. Nature Reviews. Drug Discovery 1 (7): 493–502. doi:10.1038/nrd839. PMID 12120256. 
  50. ^ AutoDock's role in Developing the First Clinically-Approved HIV Integrase Inhibitor”. Press Release. The Scripps Research Institute (2007年12月17日). 2020年10月12日閲覧。
  51. ^ Klein DF (Mar 2008). “The loss of serendipity in psychopharmacology”. JAMA 299 (9): 1063–5. doi:10.1001/jama.299.9.1063. PMID 18319418. 
  52. ^ 7 Limitations of Molecular Docking & Computer Aided Drug Design and Discovery”. Inner Light Publishers. 2018年10月21日閲覧。



医薬品設計

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/06 06:23 UTC 版)

ニコチン作動薬」の記事における「医薬品設計」の解説

nAChRに影響与え薬物には、作動薬部分作動薬遮断薬がある。ニコチン等の作動薬は、nAChRに暫くの間濃度やnAChRサブタイプによって数秒から数分接触する脱分極剤として作用するが、作動薬慢性的に接触すると、急速かつ持続的な脱感作起こり長期的な機能停止陥る事もある。部分的nAChR作動薬は、禁煙に役立つと思われるので研究されている。部分作動薬は、nAChRに結合し作動薬よりも少量ドーパミン放出刺激する事で、ニコチンの不在を補うと考えられている。ニコチン作動薬中には特異性がないものがある事はよく知られており、nAChRの特定のサブタイプ標的とする必要がある病気の治療使用する際に問題となる可能性がある。これらの非特異的作動薬には、例えアセチルコリン、ニコチン、エピバチジン等があり、いずれも複数サブタイプのnAChRを標的としている。

※この「医薬品設計」の解説は、「ニコチン作動薬」の解説の一部です。
「医薬品設計」を含む「ニコチン作動薬」の記事については、「ニコチン作動薬」の概要を参照ください。

ウィキペディア小見出し辞書の「医薬品設計」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「医薬品設計」の関連用語

医薬品設計のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



医薬品設計のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの医薬品設計 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのニコチン作動薬 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS