syz conjectureとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > syz conjectureの意味・解説 

SYZ予想

(syz conjecture から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/10/09 07:07 UTC 版)

Jump to navigation Jump to search
弦理論


SYZ予想(SYZ conjecture)は、ミラー対称性予想を理解しようという理論物理学者と数学者による試みである。もともとの予想は、アンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、エリック・ザスロフ英語版(Eric Zaslow)による論文 "Mirror Symmetry is T-duality"[1] で提唱された。

SYZ予想は、ホモロジカルミラー対称性予想に沿い、ミラー対称性の理解を数学のことばで行うことの中でもっとも研究されている道具のひとつである。ホモロジカルミラー対称性がホモロジー代数を基礎としていることに対し、SYZ予想はミラー対称性を幾何学的に実現しようとする。

定式化

弦理論では、ミラー対称性は、タイプ IIAとタイプ IIBを関連付け、2つの理論がミラーペアとなるような多様体にコンパクト化すると、タイプ IIAの有効場の理論がタイプ IIBの理論に等価となるはずであると予言する。

SYZ予想は、この事実を使いミラー対称性を実現する。X の上へコンパクト化されたタイプ IIAの理論のBPS状態、特にモジュライ空間 X を持つ 0-ブレーン を考えることから始める。Y の上へコンパクト化されたタイプ IIBの理論のすべての BPS状態は 3-ブレーン であることが知られている。従って、ミラー対称性は、タイプ IIAの理論の 0-ブレーン をタイプIIBの理論の 3-ブレーンの部分集合へ写像する。

超対称性条件を考えることにより、これらの 3-ブレーン は特殊ラグランジアン部分多様体であることが示されている[2][3]。他方、T-双対はこの場合と同じ変換となるので、ミラー対称性は T-双対 である。

参考文献

  1. ^ Strominger, Andrew; Yau, Shing-Tung; Zaslow, Eric (1996), “Mirror symmetry is T-duality”, Nuclear Physics B 479 (1–2): 243–259, arXiv:hep-th/9606040, Bibcode 1996NuPhB.479..243S, doi:10.1016/0550-3213(96)00434-8 .
  2. ^ Becker, Katrin; Becker, Melanie; Strominger, Andrew (1995), “Fivebranes, membranes and non-perturbative string theory”, Nuclear Physics B 456 (1–2): 130–152, arXiv:hep-th/9507158, Bibcode 1995NuPhB.456..130B, doi:10.1016/0550-3213(95)00487-1 .
  3. ^ Harvey, Reese; Lawson, H. Blaine, Jr. (1982), “Calibrated geometries”, Acta Mathematica 148 (1): 47–157, doi:10.1007/BF02392726 .



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「syz conjecture」の関連用語

1
18% |||||

syz conjectureのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



syz conjectureのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのSYZ予想 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS