ノンパラメトリック手法
ノンパラメトリック(英: non-parametric)な手法とは、統計学において、少数のパラメータ(母数: 母集団を規定する量)で表現されるモデルや確率分布を使用する物をパラメトリックな手法と呼ぶが、そうで無い手法をノンパラメトリックな手法という。回帰・分類・密度推定・仮説検定などそれぞれの統計学の分野でノンパラメトリックな手法がある。ノンパラメトリック検定は、特定のパラメトリックな確率分布に依存しない仮説検定 (distribution-free test) である[1]。
適用と目的
ノンパラメトリック手法は順序尺度、例えばレストランの人気ランキングなどを分析する際によく使われる。ランキングは順序を表してはいるものの、具体的な数値(比率尺度や間隔尺度)は提供しない尺度水準である。尺度水準という点で、ノンパラメトリック手法は順序尺度に基づくものである。データの順序尺度に基づいてソートした結果があれば、経験累積分布関数を作ることができ、ノンパラメトリック検定ではそれを利用する。
ノンパラメトリック手法はパラメトリック手法と比べて、母集団の分布などの前提を必要としない。そのためノンパラメトリック手法は広きにわたり適用できる(汎用性がある)。事前に詳しい事が解っていないデータや、社会科学や心理学におけるアンケート調査の分析などにおいて、ノンパラメトリック手法は広く使用されている。
ノンパラメトリック検定は、対応するパラメトリック検定(もし前提条件が満たされていれば)と比べて「パワー」が弱い。つまりパラメトリック検定と同じ「信頼」を得ようとした場合、ノンパラメトリック手法ではより多くの標本数を要することになる。パラメトリックとノンパラメトリックには、頑強性と効率性の間でのトレードオフが生じている訳である。ただし、例えば正規分布の場合、最善はパラメトリック検定のt検定であるが、ノンパラメトリック検定のウィルコクソンの符号順位検定を用いても、必要なデータ数は カテゴリ
- nonparametric statisticsのページへのリンク