antibody-dependent enhancementとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > antibody-dependent enhancementの意味・解説 

エー‐ディー‐イー【ADE】

読み方:えーでぃーいー

《antibody-dependent enhancement》感染ワクチン投与産生され抗体が不十分または不適合であった場合、かえってウイルスの感染性高めてしまう現象抗体依存性感染増強抗体依存性免疫増強


抗体依存性感染増強

(antibody-dependent enhancement から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/29 20:53 UTC 版)

抗体依存性感染増強 (こうたいいそんせいかんせんぞうきょう、: Antibody-dependent enhancement, ADE) または抗体依存性免疫増強 (こうたいいそんせいめんえきぞうきょう) とは、ウイルス粒子と不適切な抗体とが結合すると宿主細胞への侵入が促進され、ウイルス粒子が複製される現象である[1][2]。不適切な抗ウイルス抗体は、食細胞のFcγ受容体(FcγR)または補体経路を経由して目標の免疫細胞のウイルス感染を促進する[3]。ウイルスと相互作用した後、抗体は特定の免疫細胞または補体タンパク質の一部で発現されるFcγRに、Fc領域で結合する。この相互作用は、免疫細胞によるウイルス抗体複合体の食作用を促進する。


  1. ^ a b c d e “Antibody-dependent enhancement of virus infection and disease”. Viral Immunology 16 (1): 69–86. (2003). doi:10.1089/088282403763635465. PMID 12725690. 
  2. ^ Kulkarni, Ruta (2019-11-05). “Antibody-Dependent Enhancement of Viral Infections”. Dynamics of Immune Activation in Viral Diseases: 9–41. doi:10.1007/978-981-15-1045-8_2. PMC 7119964. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7119964/. 
  3. ^ a b c “The role of IgG Fc receptors in antibody-dependent enhancement”. Nature Reviews. Immunology. (August 2020). doi:10.1038/s41577-020-00410-0. PMID 32782358. 
  4. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290032/
  5. ^ “The potential danger of suboptimal antibody responses in COVID-19”. Nature Reviews. Immunology 20 (6): 339–341. (June 2020). doi:10.1038/s41577-020-0321-6. PMC 7187142. PMID 32317716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187142/. 
  6. ^ a b “Medical Countermeasures Analysis of 2019-nCoV and Vaccine Risks for Antibody-Dependent Enhancement (ADE)”. SSRN Working Paper Series. (2020). doi:10.2139/ssrn.3546070. ISSN 1556-5068. 
  7. ^ “Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses” (English). Frontiers in Immunology 10: 332. (2019). doi:10.3389/fimmu.2019.00332. PMC 6404786. PMID 30873178. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404786/. 
  8. ^ “Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera”. PLOS Pathogens 10 (10): e1004386. (October 2014). doi:10.1371/journal.ppat.1004386. PMC 4183589. PMID 25275316. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183589/. 
  9. ^ “Modulation of Dengue/Zika Virus Pathogenicity by Antibody-Dependent Enhancement and Strategies to Protect Against Enhancement in Zika Virus Infection”. Frontiers in Immunology 9: 597. (2018). doi:10.3389/fimmu.2018.00597. PMC 5925603. PMID 29740424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925603/. 
  10. ^ “Yellow fever vaccine”. Vaccines (6 ed.). Amsterdam: Elsevier. (2012). pp. 870–968. ISBN 9781455700905 
  11. ^ a b c d “Pathogenesis of oral type I feline infectious peritonitis virus (FIPV) infection: Antibody-dependent enhancement infection of cats with type I FIPV via the oral route”. The Journal of Veterinary Medical Science 81 (6): 911–915. (June 2019). doi:10.1292/jvms.18-0702. PMC 6612493. PMID 31019150. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612493/. 
  12. ^ a b c d e f “Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus”. Virology Journal 11 (1): 82. (May 2014). doi:10.1186/1743-422X-11-82. PMC 4018502. PMID 24885320. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018502/. 
  13. ^ “Antibody-dependent enhancement of influenza disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics”. Proceedings of the National Academy of Sciences of the United States of America 116 (30): 15194–15199. (July 2019). doi:10.1073/pnas.1821317116. PMC 6660725. PMID 31296560. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660725/. 
  14. ^ “Enhancing antibodies in HIV infection”. Parasitology 115 Suppl (7): S127-40. (1997). doi:10.1017/s0031182097001819. PMID 9571698. 
  15. ^ “In Vitro Enhancement of Respiratory Syncytial Virus Infection by Maternal Antibodies Does Not Explain Disease Severity in Infants”. Journal of Virology 91 (21). (November 2017). doi:10.1128/JVI.00851-17. PMC 5640862. PMID 28794038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640862/. 
  16. ^ “Antibody-dependent enhancement of respiratory syncytial virus infection by sera from young infants”. Clinical and Diagnostic Laboratory Immunology 1 (6): 670–7. (November 1994). doi:10.1128/CDLI.1.6.670-677.1994. PMC 368388. PMID 8556519. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC368388/. 
  17. ^ “Neutralizing and enhancing activities of human respiratory syncytial virus-specific antibodies”. Clinical and Diagnostic Laboratory Immunology 3 (3): 280–6. (May 1996). doi:10.1128/CDLI.3.3.280-286.1996. PMC 170331. PMID 8705669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC170331/. 
  18. ^ “The role of IgG Fc receptors in antibody-dependent enhancement”. Nature Reviews. Immunology: 1–11. (August 2020). doi:10.1038/s41577-020-00410-0. PMC 7418887. PMID 32782358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418887/. 
  19. ^ Thomas, Naomi (2020年7月22日). “Phase 3 trials will watch for possibility of vaccine-induced enhancement of infection, Fauci says”. CNN. https://www.cnn.com/world/live-news/coronavirus-pandemic-07-22-20-intl/index.html 
  20. ^ “News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine”. Proceedings of the National Academy of Sciences of the United States of America 117 (15): 8218–8221. (April 2020). doi:10.1073/pnas.2005456117. PMC 7165470. PMID 32229574. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165470/. 
  21. ^ “Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures”. Nature Biotechnology 38 (7): 789–791. (July 2020). doi:10.1038/s41587-020-0577-1. PMID 32504046. 
  22. ^ a b c d e f g “SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement”. Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi 18 Suppl 2: 31–6. (February 2012). PMID 22311359. 
  23. ^ a b c d e f “Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates”. ACS Infectious Diseases 2 (5): 361–76. (May 2016). doi:10.1021/acsinfecdis.6b00006. PMC 7075522. PMID 27627203. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075522/. 
  24. ^ a b c “Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry”. Journal of Virology 94 (5). (February 2020). doi:10.1128/JVI.02015-19. PMC 7022351. PMID 31826992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022351/. 
  25. ^ a b c Mechanism of antibody-dependent enhancement in severe acute respiratory syndrome coronavirus infection. The University of Hong Kong Libraries. (2012). doi:10.5353/th_b4732706. 
  26. ^ a b c “A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies”. Archives of Virology 120 (3–4): 207–17. (September 1991). doi:10.1007/bf01310476. PMC 7087175. PMID 1659798. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087175/. 
  27. ^ a b “Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses”. Archives of Virology 117 (1–2): 85–95. (1991). doi:10.1007/BF01310494. PMC 7086586. PMID 1706593. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086586/. 
  28. ^ Yang, Zhi-yong; Werner, Heidi C.; Kong, Wing-pui; Leung, Kwanyee; Traggiai, Elisabetta; Lanzavecchia, Antonio; Nabel, Gary J. (2005-01-18). “Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses”. Proceedings of the National Academy of Sciences of the United States of America 102 (3): 797–801. doi:10.1073/pnas.0409065102. ISSN 0027-8424. PMID 15642942. https://pubmed.ncbi.nlm.nih.gov/15642942/. 
  29. ^ a b “Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus”. Journal of Virology 66 (11): 6695–705. (November 1992). doi:10.1128/JVI.66.11.6695-6705.1992. PMC 240165. PMID 1383568. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC240165/. 
  30. ^ a b “Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins”. Biochemical and Biophysical Research Communications 451 (2): 208–14. (August 2014). doi:10.1016/j.bbrc.2014.07.090. PMC 7092860. PMID 25073113. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092860/. 
  31. ^ a b c d e f Yip, M. S.; Leung, H. L.; Li, P. H.; Cheung, C. Y.; Dutry, I.; Li, D.; Daëron, M.; Bruzzone, R. et al. (June 2016). “Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS”. Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi 22 (3 Suppl 4): 25–31. ISSN 1024-2708. PMID 27390007. https://pubmed.ncbi.nlm.nih.gov/27390007/. 
  32. ^ a b c d e “Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway”. Journal of Virology 85 (20): 10582–97. (October 2011). doi:10.1128/JVI.00671-11. PMC 3187504. PMID 21775467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187504/. 
  33. ^ “Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV”. Journal of Immunology 181 (9): 6337–48. (November 2008). doi:10.4049/jimmunol.181.9.6337. PMID 18941225. 
  34. ^ “Analysis of the mechanism by which BALB/c mice having prior immunization with nucleocapsid protein of SARS-CoV develop severe pneumonia after SARS-CoV infection”. Procedia in Vaccinology 2 (1): 44–50. (2010). doi:10.1016/j.provac.2010.03.009. PMC 7128161. PMID 32288911. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7128161/. 
  35. ^ a b Gao, Ting; Hu, Mingdong; Zhang, Xiaopeng; Li, Hongzhen; Zhu, Lin; Liu, Hainan; Dong, Qincai; Zhang, Zhang et al. (2020-06-18). “Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation” (英語). medRxiv: 2020.03.29.20041962. doi:10.1101/2020.03.29.20041962. https://www.medrxiv.org/content/10.1101/2020.03.29.20041962v3. 
  36. ^ Buchholz, Ursula J.; Bukreyev, Alexander; Yang, Lijuan; Lamirande, Elaine W.; Murphy, Brian R.; Subbarao, Kanta; Collins, Peter L. (2004-06-29). “Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity” (英語). Proceedings of the National Academy of Sciences 101 (26): 9804–9809. doi:10.1073/pnas.0403492101. ISSN 0027-8424. PMID 15210961. https://www.pnas.org/content/101/26/9804. 
  37. ^ a b “SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMCs) from SARS patients”. Journal of Clinical Virology 28 (3): 239–44. (December 2003). doi:10.1016/s1386-6532(03)00195-1. PMC 7128964. PMID 14522061. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7128964/. 
  38. ^ a b c “SARS-coronavirus replication in human peripheral monocytes/macrophages”. Virus Research 107 (1): 93–101. (January 2005). doi:10.1016/j.virusres.2004.09.004. PMC 7114182. PMID 15567038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114182/. 
  39. ^ “Influence of FcgammaRIIA and MBL polymorphisms on severe acute respiratory syndrome”. Tissue Antigens 66 (4): 291–6. (October 2005). doi:10.1111/j.1399-0039.2005.00476.x. PMC 7190181. PMID 16185324. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190181/. 
  40. ^ a b c “The spike protein of SARS-CoV--a target for vaccine and therapeutic development”. Nature Reviews. Microbiology 7 (3): 226–36. (March 2009). doi:10.1186/1753-6561-5-s1-p80. PMC 3019510. PMID 19198616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019510/. 
  41. ^ a b c d e f “Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro”. Vaccine 25 (4): 729–40. (January 2007). doi:10.1016/j.vaccine.2006.08.011. PMC 7115629. PMID 17049691. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115629/. 
  42. ^ a b c d e Hohdatsu, T.; Yamada, M.; Tominaga, R.; Makino, K.; Kida, K.; Koyama, H. (1998-01). “Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus”. The Journal of Veterinary Medical Science 60 (1): 49–55. doi:10.1292/jvms.60.49. ISSN 0916-7250. PMID 9492360. https://pubmed.ncbi.nlm.nih.gov/9492360/. 
  43. ^ “Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site” (英語). iScience 23 (6): 101212. (2020-06-26). doi:10.1016/j.isci.2020.101212. ISSN 2589-0042. https://www.sciencedirect.com/science/article/pii/S2589004220303977. 
  44. ^ “Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses”. Virology 243 (1): 150–7. (March 1998). doi:10.1006/viro.1998.9045. PMC 7131759. PMID 9527924. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131759/. 
  45. ^ “Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization”. Journal of Virology 64 (3): 1407–9. (March 1990). doi:10.1128/jvi.64.3.1407-1409.1990. PMC 249267. PMID 2154621. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC249267/. 
  46. ^ a b Takano, Tomomi; Kawakami, Chisako; Yamada, Shinji; Satoh, Ryoichi; Hohdatsu, Tsutomu (2008-12). “Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection”. The Journal of Veterinary Medical Science 70 (12): 1315–1321. doi:10.1292/jvms.70.1315. ISSN 0916-7250. PMID 19122397. https://pubmed.ncbi.nlm.nih.gov/19122397/. 
  47. ^ “Is antibody-dependent enhancement playing a role in COVID-19 pathogenesis?”. Swiss Medical Weekly 150: w20249. (April 2020). doi:10.4414/smw.2020.20249. PMID 32298458. 
  48. ^ a b c d e f g h “Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus”. PloS One 7 (4): e35421. (2012). Bibcode2012PLoSO...735421T. doi:10.1371/journal.pone.0035421. PMC 3335060. PMID 22536382. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335060/. 
  49. ^ “A perspective on potential antibody-dependent enhancement of SARS-CoV-2”. Nature 584 (7821): 353–363. (August 2020). doi:10.1038/s41586-020-2538-8. PMID 32659783. 
  50. ^ a b c d “Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody”. PLoS Pathogens 13 (8): e1006565. (August 2017). doi:10.1371/journal.ppat.1006565. PMC 5574614. PMID 28817732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574614/. 
  51. ^ a b c “Evaluation of Antibody-Dependent Enhancement of SARS-CoV Infection in Rhesus Macaques Immunized with an Inactivated SARS-CoV Vaccine”. Virologica Sinica 33 (2): 201–204. (April 2018). doi:10.1007/s12250-018-0009-2. PMC 6178114. PMID 29541941. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178114/. 
  52. ^ a b c “Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection”. JCI Insight 4 (4). (February 2019). doi:10.1172/jci.insight.123158. PMC 6478436. PMID 30830861. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478436/. 
  53. ^ a b c d e Khalaj-Hedayati, Atin (2020-07-18). “Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development”. Journal of Immunology Research 2020. doi:10.1155/2020/7201752. ISSN 2314-8861. PMC 7368938. PMID 32695833. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368938/. 
  54. ^ a b “Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets”. Journal of Virology 78 (22): 12672–6. (November 2004). doi:10.1128/JVI.78.22.12672-12676.2004. PMC 525089. PMID 15507655. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC525089/. 
  55. ^ “Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development”. EBioMedicine 55: 102768. (May 2020). doi:10.1016/j.ebiom.2020.102768. PMC 7161485. PMID 32344202. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161485/. 
  56. ^ a b c “Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus”. Human Vaccines & Immunotherapeutics 12 (9): 2351–6. (September 2016). doi:10.1080/21645515.2016.1177688. PMC 5027702. PMID 27269431. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027702/. 
  57. ^ a b “A Highly Immunogenic, Protective, and Safe Adenovirus-Based Vaccine Expressing Middle East Respiratory Syndrome Coronavirus S1-CD40L Fusion Protein in a Transgenic Human Dipeptidyl Peptidase 4 Mouse Model”. The Journal of Infectious Diseases 220 (10): 1558–1567. (October 2019). doi:10.1093/infdis/jiz137. PMC 7107499. PMID 30911758. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7107499/. 
  58. ^ a b c “Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine”. Journal of Virology 88 (15): 8597–614. (August 2014). doi:10.1128/JVI.00983-14. PMC 4135953. PMID 24850731. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135953/. 
  59. ^ a b c d e “Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology”. Journal of Virology 89 (6): 2995–3007. (March 2015). doi:10.1128/JVI.02980-14. PMC 4337527. PMID 25520500. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337527/. 
  60. ^ a b c “A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge”. Journal of Virology 85 (23): 12201–15. (December 2011). doi:10.1128/JVI.06048-11. PMC 3209347. PMID 21937658. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209347/. 
  61. ^ Skwarczynski, Mariusz (2016-11-15). “Inulin: A New Adjuvant With Unknown Mode of Action”. EBioMedicine 15: 8–9. doi:10.1016/j.ebiom.2016.11.019. ISSN 2352-3964. PMC 5233799. PMID 27865766. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233799/. 
  62. ^ a b c d e f “Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants”. PLoS Medicine 3 (12): e525. (December 2006). doi:10.1371/journal.pmed.0030525. PMC 1716185. PMID 17194199. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716185/. 
  63. ^ a b c “Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV”. Journal of Immunology 181 (9): 6337–48. (November 2008). doi:10.4049/jimmunol.181.9.6337. PMID 18941225. 
  64. ^ a b “Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV”. Vaccine 26 (6): 797–808. (February 2008). doi:10.1016/j.vaccine.2007.11.092. PMC 2267761. PMID 18191004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267761/. 
  65. ^ “Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs”. Microbiology and Immunology 64 (1): 33–51. (January 2020). doi:10.1111/1348-0421.12754. PMC 7168429. PMID 31692019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168429/. 
  66. ^ “Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model”. Vaccine 25 (15): 2832–8. (April 2007). doi:10.1016/j.vaccine.2006.10.031. PMC 7115660. PMID 17092615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115660/. 
  67. ^ a b c d “Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines”. The Journal of General Virology 89 (Pt 9): 2136–2146. (September 2008). doi:10.1099/vir.0.2008/001891-0. PMID 18753223. 
  68. ^ “A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters”. Journal of Virology 82 (15): 7721–4. (August 2008). doi:10.1128/JVI.00304-08. PMC 2493341. PMID 18463152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493341/. 
  69. ^ a b “Immunogenicity and protective efficacy in mice and hamsters of a β-propiolactone inactivated whole virus SARS-CoV vaccine”. Viral Immunology 23 (5): 509–19. (October 2010). doi:10.1089/vim.2010.0028. PMC 2967819. PMID 20883165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967819/. 
  70. ^ “Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools”. Virologica Sinica 35 (3): 266–271. (June 2020). doi:10.1007/s12250-020-00207-4. PMC 7090474. PMID 32125642. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090474/. 
  71. ^ “Plasmapheresis, Anti-ACE2 and Anti-FcγRII Monoclonal Antibodies: A Possible Treatment for Severe Cases of COVID-19”. Drug Design, Development and Therapy 14: 2607–2611. (2020). doi:10.2147/DDDT.S262491. PMC 7351975. PMID 32753842. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351975/. 
  72. ^ “Viral-Induced Enhanced Disease Illness”. Frontiers in Microbiology 9: 2991. (2018-12-05). doi:10.3389/fmicb.2018.02991. PMC 6290032. PMID 30568643. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290032/. 
  73. ^ “Acute immunodeficiency, multiple organ injury, and the pathogenesis of SARS”. Applied Immunohistochemistry & Molecular Morphology 11 (4): 281–2. (December 2003). doi:10.1097/00129039-200312000-00001. PMID 14663354. 
  74. ^ “Multiple organ infection and the pathogenesis of SARS”. The Journal of Experimental Medicine 202 (3): 415–24. (August 2005). doi:10.1084/jem.20050828. PMC 2213088. PMID 16043521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213088/. 
  75. ^ “Immunopathogenesis of coronavirus infections: implications for SARS”. Nature Reviews. Immunology 5 (12): 917–27. (December 2005). doi:10.1038/nri1732. PMC 7097326. PMID 16322745. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097326/. 
  76. ^ a b c Liu, Li; Wei, Qiang; Lin, Qingqing; Fang, Jun; Wang, Haibo; Kwok, Hauyee; Tang, Hangying; Nishiura, Kenji et al. (02 21, 2019). “Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection”. JCI insight 4 (4). doi:10.1172/jci.insight.123158. ISSN 2379-3708. PMC 6478436. PMID 30830861. https://pubmed.ncbi.nlm.nih.gov/30830861/. 
  77. ^ Johnson, Elizabeth R.; Matthay, Michael A. (2010-8). “Acute Lung Injury: Epidemiology, Pathogenesis, and Treatment”. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23 (4): 243–252. doi:10.1089/jamp.2009.0775. ISSN 1941-2711. PMC 3133560. PMID 20073554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133560/. 
  78. ^ a b Cheung, Chung Y.; Poon, Leo L. M.; Ng, Iris H. Y.; Luk, Winsie; Sia, Sin-Fun; Wu, Mavis H. S.; Chan, Kwok-Hung; Yuen, Kwok-Yung et al. (2005-6). “Cytokine Responses in Severe Acute Respiratory Syndrome Coronavirus-Infected Macrophages In Vitro: Possible Relevance to Pathogenesis”. Journal of Virology 79 (12): 7819–7826. doi:10.1128/JVI.79.12.7819-7826.2005. ISSN 0022-538X. PMC 1143636. PMID 15919935. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1143636/. 
  79. ^ a b Banerjee, Arinjay; Nasir, Jalees A.; Budylowski, Patrick; Yip, Lily; Aftanas, Patryk; Christie, Natasha; Ghalami, Ayoob; Baid, Kaushal et al. (英語). Isolation, Sequence, Infectivity, and Replication Kinetics of Severe Acute Respiratory Syndrome Coronavirus 2 - Volume 26, Number 9—September 2020 - Emerging Infectious Diseases journal - CDC. doi:10.3201/eid2609.201495. https://wwwnc.cdc.gov/eid/article/26/9/20-1495_article. 
  80. ^ a b c Pontelli, Marjorie C.; Castro, Italo A.; Martins, Ronaldo B.; Veras, Flávio P.; LaSerra, Leonardo; Nascimento, Daniele C.; Cardoso, Ricardo S.; Rosales, Roberta et al. (2020-07-29). “Infection of human lymphomononuclear cells by SARS-CoV-2” (英語). bioRxiv: 2020.07.28.225912. doi:10.1101/2020.07.28.225912. https://www.biorxiv.org/content/10.1101/2020.07.28.225912v1. 
  81. ^ Law, Helen K. W.; Cheung, Chung Yan; Ng, Hoi Yee; Sia, Sin Fun; Chan, Yuk On; Luk, Winsie; Nicholls, John M.; Peiris, J. S. Malik et al. (2005-10-01). “Chemokine up-regulation in SARS-coronavirus–infected, monocyte-derived human dendritic cells”. Blood 106 (7): 2366–2374. doi:10.1182/blood-2004-10-4166. ISSN 0006-4971. PMC 1895271. PMID 15860669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895271/. 
  82. ^ Spiegel, M. (2006-07-01). “Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells” (英語). Journal of General Virology 87 (7): 1953–1960. doi:10.1099/vir.0.81624-0. ISSN 0022-1317. https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.81624-0. 
  83. ^ Moustafa, Ahmed; Aziz, Ramy K. (2020-05-31). “Traces of SARS-CoV-2 RNA in the Blood of COVID-19 Patients” (英語). medRxiv: 2020.05.10.20097055. doi:10.1101/2020.05.10.20097055. https://www.medrxiv.org/content/10.1101/2020.05.10.20097055v2. 
  84. ^ a b “Is COVID-19 receiving ADE from other coronaviruses?”. Microbes and Infection 22 (2): 72–73. (March 2020). doi:10.1016/j.micinf.2020.02.006. PMC 7102551. PMID 32092539. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102551/. 
  85. ^ First Flu Exposure Impacts Lifelong Susceptibility”. Contagion Live. 2020年9月12日閲覧。
  86. ^ a b “Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals”. Journal of Medical Virology 78 (1): 1–8. (January 2006). doi:10.1002/jmv.20499. PMC 7166884. PMID 16299724. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166884/. 
  87. ^ “Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome”. Journal of Clinical Virology 35 (2): 179–84. (February 2006). doi:10.1016/j.jcv.2005.07.005. PMC 7108264. PMID 16112612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108264/. 
  88. ^ “Neutralizing antibody response and SARS severity”. Emerging Infectious Diseases 11 (11): 1730–7. (November 2005). doi:10.3201/eid1111.040659. PMC 3367364. PMID 16318725. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367364/. 
  89. ^ Faustini, Sian E.; Jossi, Sian E.; Perez-Toledo, Marisol; Shields, Adrian M.; Allen, Joel D.; Watanabe, Yasunori; Newby, Maddy L.; Cook, Alex et al. (2020-06-18). “Detection of antibodies to the SARS-CoV-2 spike glycoprotein in both serum and saliva enhances detection of infection”. medRxiv. doi:10.1101/2020.06.16.20133025. PMC 7310662. PMID 32588002. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310662/. 
  90. ^ a b c “Antibody responses to SARS-CoV-2 in patients with COVID-19”. Nature Medicine 26 (6): 845–848. (June 2020). doi:10.1038/s41591-020-0897-1. PMID 32350462. 
  91. ^ a b “Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression”. Emerging Microbes & Infections 9 (1): 1096–1101. (December 2020). doi:10.1080/22221751.2020.1766382. PMID 32476607. 
  92. ^ a b “Analysis of the application value of serum antibody detection for staging of COVID-19 infection”. Journal of Medical Virology n/a (n/a). (July 2020). doi:10.1002/jmv.26330. PMC 7404947. PMID 32779744. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404947/. 
  93. ^ a b “Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019”. Clinical Infectious Diseases: ciaa344. (March 2020). doi:10.1093/cid/ciaa344. PMC 7184337. PMID 32221519. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184337/. 
  94. ^ a b “Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity”. Clinical Infectious Diseases. (July 2020). doi:10.1093/cid/ciaa979. PMID 32663256. 
  95. ^ a b “SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses”. Nature Communications 11 (1): 3581. (July 2020). doi:10.1038/s41467-020-17488-8. PMC 7360742. PMID 32665645. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360742/. 
  96. ^ Zhang, Xiaomei; Wu, Xian; Wang, Dan; Lu, Minya; Hou, Xin; Wang, Hongye; Liang, Te; Dai, Jiayu et al. (2020-05-02). “Proteome-wide analysis of differentially-expressed SARS-CoV-2 antibodies in early COVID-19 infection” (英語). medRxiv: 2020.04.14.20064535. doi:10.1101/2020.04.14.20064535. https://www.medrxiv.org/content/10.1101/2020.04.14.20064535v2. 
  97. ^ a b “Detection of IgM and IgG antibodies in patients with coronavirus disease 2019”. Clinical & Translational Immunology 9 (5): e01136. (May 2020). doi:10.1002/cti2.1136. PMC 7202656. PMID 32382418. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202656/. 
  98. ^ a b “SARS-CoV-2 Antibody Responses Do Not Predict COVID-19 Disease Severity”. American Journal of Clinical Pathology. (July 2020). doi:10.1093/ajcp/aqaa123. PMID 32666092. 
  99. ^ “Data Mining for the Study of the Epidemic (SARS- CoV-2) COVID-19: Algorithm for the Identification of Patients (SARS-CoV-2) COVID 19 in Mexico”. SSRN Electronic Journal. (2020). doi:10.2139/ssrn.3619549. 
  100. ^ Robbiani, Davide F.; Gaebler, Christian; Muecksch, Frauke; Lorenzi, Julio C. C.; Wang, Zijun; Cho, Alice; Agudelo, Marianna; Barnes, Christopher O. et al. (August 2020). “Convergent antibody responses to SARS-CoV-2 in convalescent individuals” (英語). Nature 584 (7821): 437–442. doi:10.1038/s41586-020-2456-9. ISSN 1476-4687. https://www.nature.com/articles/s41586-020-2456-9. 
  101. ^ Sun, Baoqing; Feng, Ying; Mo, Xiaoneng; Zheng, Peiyan; Wang, Qian; Li, Pingchao; Peng, Ping; Liu, Xiaoqing et al. (2020-05-13). “Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients”. Emerging Microbes & Infections 9 (1): 940–948. doi:10.1080/22221751.2020.1762515. ISSN 2222-1751. PMC 7273175. PMID 32357808. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273175/. 
  102. ^ Atyeo, Caroline; Fischinger, Stephanie; Zohar, Tomer; Slein, Matthew D.; Burke, John; Loos, Carolin; McCulloch, Denise J.; Newman, Kira L. et al. (2020-07-30). “Distinct Early Serological Signatures Track with SARS-CoV-2 Survival” (English). Immunity 0 (0). doi:10.1016/j.immuni.2020.07.020. ISSN 1074-7613. PMID 32783920. https://www.cell.com/immunity/abstract/S1074-7613(20)30327-7. 
  103. ^ Shang, Yufeng; Liu, Tao; Wei, Yongchang; Li, Jingfeng; Shao, Liang; Liu, Minghui; Zhang, Yongxi; Zhao, Zhigang et al. (July 2020). “Scoring systems for predicting mortality for severe patients with COVID-19”. EClinicalMedicine 24: 100426. doi:10.1016/j.eclinm.2020.100426. ISSN 2589-5370. PMC 7332889. PMID 32766541. https://pubmed.ncbi.nlm.nih.gov/32766541/. 
  104. ^ “Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during Spring-Summer 2009: four observational studies from Canada”. PLOS Medicine 7 (4): e1000258. (April 2010). doi:10.1371/journal.pmed.1000258. PMC 2850386. PMID 20386731. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850386/. 
  105. ^ “Primary influenza A virus infection induces cross-reactive antibodies that enhance uptake of virus into Fc receptor-bearing cells”. The Journal of Infectious Diseases 169 (1): 200–3. (January 1994). doi:10.1093/infdis/169.1.200. PMID 8277183. 
  106. ^ Skowronski, DM; Janjua, NZ; Kwindt, TL; De Serres, G (25 April 2013). “Virus-host interactions and the unusual age and sex distribution of human cases of influenza A(H7N9) in China, April 2013”. Eurosurveillance 18 (17): 20465. PMID 23647627. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20465 2013年5月3日閲覧。. 
  107. ^ Experts: Past exposures may help explain H7N9 age profile, Center for Infectious Disease Research & Policy, University of Minnesota, April 26, 2013. " . . The phenomenon of cross-reacting antibodies that facilitate infection is best known in dengue infections, according to Skowronski and colleagues. The dengue virus comes in four types, and a person who has a second dengue infection involving a different type from the first one can suffer a severe illness. . "
  108. ^ “Role of dendritic cells in antibody-dependent enhancement of dengue virus infection”. Journal of Virology 82 (8): 3939–51. (April 2008). doi:10.1128/JVI.02484-07. PMC 2292981. PMID 18272578. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2292981/. 
  109. ^ “A rapid immunization strategy with a live-attenuated tetravalent dengue vaccine elicits protective neutralizing antibody responses in non-human primates”. Frontiers in Immunology 5 (2014): 263. (15 September 2014). doi:10.3389/fimmu.2014.00263. PMC 4046319. PMID 24926294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046319/. 
  110. ^ “The complexity of antibody-dependent enhancement of dengue virus infection”. Viruses 2 (12): 2649–62. (December 2010). doi:10.3390/v2122649. PMC 3185591. PMID 21994635. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185591/. 
  111. ^ “Dengue virus selectively induces human mast cell chemokine production”. Journal of Virology 76 (16): 8408–19. (August 2002). doi:10.1128/JVI.76.16.8408-8419.2002. PMC 155122. PMID 12134044. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC155122/. 
  112. ^ “Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts”. Science 342 (6157): 415. (October 2013). Bibcode2013Sci...342..415N. doi:10.1126/science.342.6157.415. PMID 24159024. 
  113. ^ “Efficacy of three chloroquine-primaquine regimens for treatment of Plasmodium vivax malaria in Colombia”. The American Journal of Tropical Medicine and Hygiene 75 (4): 605–9. (October 2006). doi:10.4269/ajtmh.2006.75.605. PMID 17038680. 
  114. ^ a b c “Neutralizing antibodies after infection with dengue 1 virus”. Emerging Infectious Diseases 13 (2): 282–6. (February 2007). doi:10.3201/eid1302.060539. PMC 2725871. PMID 17479892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725871/. 
  115. ^ “Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention”. Proceedings of the National Academy of Sciences of the United States of America 104 (22): 9422–7. (May 2007). Bibcode2007PNAS..104.9422G. doi:10.1073/pnas.0703498104. PMC 1868655. PMID 17517625. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868655/. 
  116. ^ “A Trojan Horse mechanism for the spread of visna virus in monocytes”. Virology 147 (1): 231–6. (November 1985). doi:10.1016/0042-6822(85)90246-6. PMID 2998068. 
  117. ^ “Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide”. Journal of Virology 76 (19): 9877–87. (October 2002). doi:10.1128/JVI.76.19.9877-9887.2002. PMC 136495. PMID 12208965. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC136495/. 
  118. ^ “Fatal dengue encephalitis”. The Southeast Asian Journal of Tropical Medicine and Public Health 36 (1): 200–2. (January 2005). PMID 15906668. オリジナルの24 July 2011時点におけるアーカイブ。. https://web.archive.org/web/20110724015621/http://www.tm.mahidol.ac.th/seameo/2005_36_1/33-3352.pdf. 
  119. ^ “Dengue virus life cycle: viral and host factors modulating infectivity”. Cellular and Molecular Life Sciences 67 (16): 2773–86. (August 2010). doi:10.1007/s00018-010-0357-z. PMID 20372965. 
  120. ^ “Dengue: a continuing global threat”. Nature Reviews. Microbiology 8 (12 Suppl): S7-16. (December 2010). doi:10.1038/nrmicro2460. PMC 4333201. PMID 21079655. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333201/. 
  121. ^ “Cross-reacting antibodies enhance dengue virus infection in humans”. Science 328 (5979): 745–8. (May 2010). Bibcode2010Sci...328..745D. doi:10.1126/science.1185181. PMC 3837288. PMID 20448183. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837288/. 
  122. ^ “Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse”. PLOS Neglected Tropical Diseases (PLOS ONE) 4 (12): e924. (December 2010). doi:10.1371/journal.pntd.0000924. PMC 3006139. PMID 21200427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006139/. 
  123. ^ “Dr. Guzman et al. Respond to Dr. Vaughn”. American Journal of Epidemiology 152 (9): 804. (2000). doi:10.1093/aje/152.9.804. 
  124. ^ a b c “Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection”. Retrovirology 8: 16. (March 2011). doi:10.1186/1742-4690-8-16. PMC 3065417. PMID 21401915. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065417/. 
  125. ^ HIV and the pathogenesis of AIDS. Wiley-Blackwell. (2007). p. 247. ISBN 978-1-55581-393-2 
  126. ^ a b “The good and evil of complement activation in HIV-1 infection”. Cellular & Molecular Immunology 7 (5): 334–40. (September 2010). doi:10.1038/cmi.2010.8. PMC 4002684. PMID 20228834. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002684/. 
  127. ^ a b “Antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus type 1 infection in a human, Epstein-Barr virus-transformed B-lymphocytic cell line”. Journal of Virology 65 (1): 541–5. (January 1991). doi:10.1128/JVI.65.1.541-545.1991. PMC 240554. PMID 1845908. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC240554/. 
  128. ^ “Opsonization of HIV with complement enhances infection of dendritic cells and viral transfer to CD4 T cells in a CR3 and DC-SIGN-dependent manner”. Journal of Immunology 178 (2): 1086–95. (January 2007). doi:10.4049/jimmunol.178.2.1086. PMID 17202372. 
  129. ^ “Opsonization of HIV-1 by semen complement enhances infection of human epithelial cells”. Journal of Immunology 169 (6): 3301–6. (September 2002). doi:10.4049/jimmunol.169.6.3301. PMID 12218150. 
  130. ^ “Comparison of human immunodeficiency virus (HIV)-specific infection-enhancing and -inhibiting antibodies in AIDS patients”. Journal of Clinical Microbiology 40 (6): 2141–6. (June 2002). doi:10.1128/JCM.40.6.2141-2146.2002. PMC 130693. PMID 12037078. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC130693/. 
  131. ^ “Traitors of the immune system-enhancing antibodies in HIV infection: their possible implication in HIV vaccine development”. Vaccine 26 (24): 3078–85. (June 2008). doi:10.1016/j.vaccine.2007.12.028. PMC 7115406. PMID 18241961. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115406/. 
  132. ^ “Complement-mediated antibody-dependent enhancement of HIV-1 infection requires CD4 and complement receptors”. Virology 175 (2): 600–4. (April 1990). doi:10.1016/0042-6822(90)90449-2. PMID 2327077. 
  133. ^ “Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial”. The Journal of Infectious Diseases 191 (5): 666–77. (March 2005). doi:10.1086/428405. PMID 15688279. 
  134. ^ a b c “The role of IgG Fc receptors in antibody-dependent enhancement”. Nature Reviews. Immunology 20 (10): 633–643. (October 2020). doi:10.1038/s41577-020-00410-0. PMC 7418887. PMID 32782358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418887/. 
  135. ^ a b c Cardosa, M. J.; Porterfield, J. S.; Gordon, S. (1983-07-01). “Complement receptor mediates enhanced flavivirus replication in macrophages”. The Journal of Experimental Medicine 158 (1): 258–263. doi:10.1084/jem.158.1.258. ISSN 0022-1007. PMC 2187083. PMID 6864163. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2187083/. 
  136. ^ “Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications”. Reviews in Medical Virology 13 (6): 387–98. (2003). doi:10.1002/rmv.405. PMID 14625886. 
  137. ^ “Antibody-dependent enhancement of Ebola virus infection”. Journal of Virology 77 (13): 7539–44. (July 2003). doi:10.1128/JVI.77.13.7539-7544.2003. PMC 164833. PMID 12805454. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC164833/. 
  138. ^ Kinchen, Jason M.; Ravichandran, Kodi S. (October 2008). “Phagosome maturation: going through the acid test”. Nature Reviews. Molecular Cell Biology 9 (10): 781–795. doi:10.1038/nrm2515. ISSN 1471-0072. PMC 2908392. PMID 18813294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908392/. 
  139. ^ Yates, Robin M.; Hermetter, Albin; Russell, David G. (2005-03-09). “The Kinetics of Phagosome Maturation as a Function of Phagosome/Lysosome Fusion and Acquisition of Hydrolytic Activity”. Traffic 6 (5): 413–420. doi:10.1111/j.1600-0854.2005.00284.x. ISSN 1398-9219. PMID 15813751. オリジナルの2021-08-13時点におけるアーカイブ。. https://web.archive.org/web/20210813204749/https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2005.00284.x 2020年12月16日閲覧。. 
  140. ^ Ong, Eugenia Z.; Zhang, Summer L.; Tan, Hwee Cheng; Gan, Esther S.; Chan, Kuan Rong; Ooi, Eng Eong (2017-01-13). “Dengue virus compartmentalization during antibody-enhanced infection” (英語). Scientific Reports 7 (1): 40923. Bibcode2017NatSR...740923O. doi:10.1038/srep40923. ISSN 2045-2322. PMC 5234037. PMID 28084461. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234037/. 
  141. ^ Kulkarni, Ruta (2019-11-05). “Antibody-Dependent Enhancement of Viral Infections”. Dynamics of Immune Activation in Viral Diseases: 9–41. doi:10.1007/978-981-15-1045-8_2. ISBN 978-981-15-1044-1. PMC 7119964. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7119964/. 




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「antibody-dependent enhancement」の関連用語

antibody-dependent enhancementのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



antibody-dependent enhancementのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの抗体依存性感染増強 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS