Radau IA法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/11 04:08 UTC 版)
「ルンゲ=クッタ法のリスト」の記事における「Radau IA法」の解説
Radau IA法の係数 ci は方程式 P s ( 2 x − 1 ) + P s − 1 ( 2 x − 1 ) = 0 {\displaystyle P_{s}(2x-1)+P_{s-1}(2x-1)=0} の解である。ここで、Ps は s 次ルジャンドル多項式である。 3次の方法は以下の配列で与えられる。 0 1 / 4 − 1 / 4 2 / 3 1 / 4 5 / 12 1 / 4 3 / 4 {\displaystyle {\begin{array}{c|cc}0&1/4&-1/4\\2/3&1/4&5/12\\\hline &1/4&3/4\\\end{array}}} さらに5次の方法は以下の配列で与えられる。 0 1 9 − 1 − 6 18 − 1 + 6 18 3 5 − 6 10 1 9 11 45 + 7 6 360 11 45 − 43 6 360 3 5 + 6 10 1 9 11 45 + 43 6 360 11 45 − 7 6 360 1 9 4 9 + 6 36 4 9 − 6 36 {\displaystyle {\begin{array}{c|ccc}0&{\frac {1}{9}}&{\frac {-1-{\sqrt {6}}}{18}}&{\frac {-1+{\sqrt {6}}}{18}}\\{\frac {3}{5}}-{\frac {\sqrt {6}}{10}}&{\frac {1}{9}}&{\frac {11}{45}}+{\frac {7{\sqrt {6}}}{360}}&{\frac {11}{45}}-{\frac {43{\sqrt {6}}}{360}}\\{\frac {3}{5}}+{\frac {\sqrt {6}}{10}}&{\frac {1}{9}}&{\frac {11}{45}}+{\frac {43{\sqrt {6}}}{360}}&{\frac {11}{45}}-{\frac {7{\sqrt {6}}}{360}}\\\hline &{\frac {1}{9}}&{\frac {4}{9}}+{\frac {\sqrt {6}}{36}}&{\frac {4}{9}}-{\frac {\sqrt {6}}{36}}\\\end{array}}}
※この「Radau IA法」の解説は、「ルンゲ=クッタ法のリスト」の解説の一部です。
「Radau IA法」を含む「ルンゲ=クッタ法のリスト」の記事については、「ルンゲ=クッタ法のリスト」の概要を参照ください。
- Radau IA法のページへのリンク