RNA治療とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > RNA治療の意味・解説 

RNA治療

(RNA therapeutics から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/28 13:11 UTC 版)

RNA治療: RNA therapeutics)またはRNA治療薬は、リボ核酸(RNA)に基づく薬物の一群である。主な種類には、メッセンジャーRNA(mRNA)、アンチセンスRNA(asRNA)、RNA干渉(RNAi)、およびRNAアプタマーに基づくものがある。


  1. ^ DeFrancesco L (March 2017). “The 'anti-hype' vaccine”. Nature Biotechnology 35 (3): 193–197. doi:10.1038/nbt.3812. PMID 28244993. 
  2. ^ Our COVID-19 Vaccine Study – What's Next? | Pfizer”. www.pfizer.com. 2020年11月29日閲覧。
  3. ^ a b Iida T, Nakayama J, Moazed D (July 2008). “siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription”. Molecular Cell 31 (2): 178–89. doi:10.1016/j.molcel.2008.07.003. PMC 2575423. PMID 18657501. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575423/. 
  4. ^ a b c d e f g h i Nikam RR, Gore KR (August 2018). “Journey of siRNA: Clinical Developments and Targeted Delivery”. Nucleic Acid Therapeutics 28 (4): 209–224. doi:10.1089/nat.2017.0715. PMID 29584585. 
  5. ^ a b c d e f Bartel DP (January 2009). “MicroRNAs: target recognition and regulatory functions”. Cell 136 (2): 215–33. doi:10.1016/j.cell.2009.01.002. PMC 3794896. PMID 19167326. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794896/. 
  6. ^ a b c d e f g h i j k l m n o p q r Zhu G, Chen X (September 2018). “Aptamer-based targeted therapy”. Advanced Drug Delivery Reviews 134: 65–78. doi:10.1016/j.addr.2018.08.005. PMC 6239901. PMID 30125604. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6239901/. 
  7. ^ a b c d e f g h i j k l m n o p Kaur H, Bruno JG, Kumar A, Sharma TK (2018-07-01). “Aptamers in the Therapeutics and Diagnostics Pipelines”. Theranostics 8 (15): 4016–4032. doi:10.7150/thno.25958. PMC 6096388. PMID 30128033. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096388/. 
  8. ^ a b Dunn MR, Jimenez RM, Chaput JC (2017-10-04). “Analysis of aptamer discovery and technology” (英語). Nature Reviews Chemistry 1 (10): 1–16. doi:10.1038/s41570-017-0076. ISSN 2397-3358. 
  9. ^ Coutinho MF, Matos L, Santos JI, Alves S (2019) (英語). The mRNA Metabolism in Human Disease. 1157. Cham: Springer International Publishing. 133–177. doi:10.1007/978-3-030-19966-1_7. ISBN 978-3-030-19965-4. PMID 31342441 
  10. ^ Messenger RNA (mRNA)”. Genome.gov. 2020年10月5日閲覧。
  11. ^ mRNA” (英語). Biology Dictionary (2016年11月25日). 2020年11月30日閲覧。
  12. ^ Herndon MK, Quirk CC, Nilson JH (January 2016). “Chapter 2 - Control of Hormone Gene Expression”. Endocrinology: Adult and Pediatric (Seventh ed.). Philadelphia: W.B. Saunders. pp. 16–29.e2. doi:10.1016/B978-0-323-18907-1.00002-0. ISBN 978-0-323-18907-1 
  13. ^ Yamamoto A, Kormann M, Rosenecker J, Rudolph C (March 2009). “Current prospects for mRNA gene delivery”. European Journal of Pharmaceutics and Biopharmaceutics 71 (3): 484–9. doi:10.1016/j.ejpb.2008.09.016. PMID 18948192. 
  14. ^ Huang L, Zhang L, Li W, Li S, Wen J, Li H, Liu Z (July 2020). “Advances in Development of mRNA-Based Therapeutics”. Current Topics in Microbiology and Immunology (Berlin, Heidelberg: Springer): 1–20. doi:10.1007/82_2020_222. PMID 32683507. 
  15. ^ Hershey AD (September 1953). “Nucleic acid economy in bacteria infected with bacteriophage T2”. The Journal of General Physiology 37 (1): 1–23. doi:10.1085/jgp.37.1.1. PMC 2147426. PMID 13084888. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147426/. 
  16. ^ Astrachan L, Colowick CP, Kaplan NO (April 1956). “Phosphorus incorporation in Escherichia coli ribonucleic acid after infection with bacteriophage T2”. Virology 2 (2): 149–161. doi:10.1016/0042-6822(56)90016-2. PMID 13312220. 
  17. ^ Brenner S, Jacob F, Meselson M (May 1961). “An unstable intermediate carrying information from genes to ribosomes for protein synthesis”. Nature 190 (4776): 576–581. Bibcode1961Natur.190..576B. doi:10.1038/190576a0. PMID 20446365. 
  18. ^ Gros F, Hiatt H, Gilbert W, Kurland CG, Risebrough RW, Watson JD (May 1961). “Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli”. Nature 190 (4776): 581–5. Bibcode1961Natur.190..581G. doi:10.1038/190581a0. PMID 13708983. 
  19. ^ Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (March 1990). “Direct gene transfer into mouse muscle in vivo”. Science 247 (4949 Pt 1): 1465–8. Bibcode1990Sci...247.1465W. doi:10.1126/science.1690918. PMID 1690918. 
  20. ^ a b Sahin U, Karikó K, Türeci Ö (October 2014). “mRNA-based therapeutics--developing a new class of drugs”. Nature Reviews. Drug Discovery 13 (10): 759–80. doi:10.1038/nrd4278. PMID 25233993. 
  21. ^ Karikó K (April 2019). “In vitro-Transcribed mRNA Therapeutics: Out of the Shadows and Into the Spotlight”. Molecular Therapy 27 (4): 691–692. doi:10.1016/j.ymthe.2019.03.009. PMC 6453554. PMID 30905578. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453554/. 
  22. ^ Mandl CW, Aberle JH, Aberle SW, Holzmann H, Allison SL, Heinz FX (December 1998). “In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model”. Nature Medicine 4 (12): 1438–40. doi:10.1038/4031. PMID 9846585. 
  23. ^ Hoerr I, Obst R, Rammensee HG, Jung G (January 2000). “In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies”. European Journal of Immunology 30 (1): 1–7. doi:10.1002/1521-4141(200001)30:1<1::aid-immu1>3.0.co;2-#. PMID 10602021. 
  24. ^ Van Hoecke L, Roose K (February 2019). “How mRNA therapeutics are entering the monoclonal antibody field”. Journal of Translational Medicine 17 (1): 54. doi:10.1186/s12967-019-1804-8. PMC 6387507. PMID 30795778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387507/. 
  25. ^ a b Zhang C, Maruggi G, Shan H, Li J (2019). “Advances in mRNA Vaccines for Infectious Diseases” (英語). Frontiers in Immunology 10: 594. doi:10.3389/fimmu.2019.00594. PMC 6446947. PMID 30972078. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446947/. 
  26. ^ Hua Z, Hou B (March 2013). “TLR signaling in B-cell development and activation”. Cellular & Molecular Immunology 10 (2): 103–6. doi:10.1038/cmi.2012.61. PMC 4003046. PMID 23241902. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003046/. 
  27. ^ Kato H, Oh SW, Fujita T (May 2017). “RIG-I-Like Receptors and Type I Interferonopathies”. Journal of Interferon & Cytokine Research 37 (5): 207–213. doi:10.1089/jir.2016.0095. PMC 5439449. PMID 28475461. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439449/. 
  28. ^ Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F, Benjamin R, Lu D, Curiel DT (April 1995). “Characterization of a messenger RNA polynucleotide vaccine vector”. Cancer Research 55 (7): 1397–400. PMID 7882341. 
  29. ^ Boczkowski D, Nair SK, Snyder D, Gilboa E (August 1996). “Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo”. The Journal of Experimental Medicine 184 (2): 465–72. doi:10.1084/jem.184.2.465. PMC 2192710. PMID 8760800. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192710/. 
  30. ^ Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E (September 2000). “Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells”. Nature Medicine 6 (9): 1011–7. doi:10.1038/79519. PMID 10973321. 
  31. ^ Argos Therapeutics (2018-06-13). An International Phase 3 Randomized Trial of Autologous Dendritic Cell Immunotherapy (AGS-003) Plus Standard Treatment of Advanced Renal Cell Carcinoma (ADAPT). https://clinicaltrials.gov/ct2/show/NCT01582672. 
  32. ^ Kreiter S, Konrad T, Sester M, Huber C, Türeci O, Sahin U (October 2007). “Simultaneous ex vivo quantification of antigen-specific CD4+ and CD8+ T cell responses using in vitro transcribed RNA”. Cancer Immunology, Immunotherapy 56 (10): 1577–87. doi:10.1007/s00262-007-0302-7. PMID 17361438. 
  33. ^ Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, Huber C, Türeci O, Sahin U (January 2008). “Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals”. Journal of Immunology 180 (1): 309–18. doi:10.4049/jimmunol.180.1.309. PMID 18097032. 
  34. ^ Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, Darzynkiewicz E, Huber C, Türeci O, Sahin U (August 2010). “Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo”. Gene Therapy 17 (8): 961–71. doi:10.1038/gt.2010.52. PMID 20410931. 
  35. ^ BioNTech RNA Pharmaceuticals GmbH (2020-01-14). Clinical First-in-human Dose Escalation Study Evaluating the Safety and Tolerability of Intranodal Administration of an RNA-based Cancer Vaccine Targeting Two Tumor-associated Antigens in Patients With Advanced Melanoma. https://clinicaltrials.gov/ct2/show/NCT01684241. 
  36. ^ Ligtenberg MA, Pico de Coaña Y, Shmushkovich T, Yoshimoto Y, Truxova I, Yang Y, Betancur-Boissel M, Eliseev AV, Wolfson AD, Kiessling R (June 2018). “Self-Delivering RNAi Targeting PD-1 Improves Tumor-Specific T Cell Functionality for Adoptive Cell Therapy of Malignant Melanoma”. Molecular Therapy 26 (6): 1482–1493. doi:10.1016/j.ymthe.2018.04.015. PMC 5986970. PMID 29735366. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986970/. 
  37. ^ Lian S, Xie R, Ye Y, Xie X, Li S, Lu Y, Li B, Cheng Y, Katanaev VL, Jia L (April 2019). “Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release”. EBioMedicine 42: 281–295. doi:10.1016/j.ebiom.2019.03.018. PMC 6491392. PMID 30878596. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491392/. 
  38. ^ mRNA-4157 | Moderna, Inc.”. www.modernatx.com. 2020年11月30日閲覧。
  39. ^ Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet JG, Lévy JP, Meulien P (July 1993). “Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA”. European Journal of Immunology 23 (7): 1719–22. doi:10.1002/eji.1830230749. PMID 8325342. 
  40. ^ Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, Otten GR, Brazzoli M, Buccato S, Bonci A, Casini D, Maione D, Qi ZQ, Gill JE, Caiazza NC, Urano J, Hubby B, Gao GF, Shu Y, De Gregorio E, Mandl CW, Mason PW, Settembre EC, Ulmer JB, Craig Venter J, Dormitzer PR, Rappuoli R, Geall AJ (August 2013). “Rapidly produced SAM(®) vaccine against H7N9 influenza is immunogenic in mice”. Emerging Microbes & Infections 2 (8): e52. doi:10.1038/emi.2013.54. PMC 3821287. PMID 26038486. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821287/. 
  41. ^ Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen KJ, Stitz L, Kramps T (December 2012). “Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection”. Nature Biotechnology 30 (12): 1210–6. doi:10.1038/nbt.2436. PMID 23159882. 
  42. ^ Routy JP, Boulassel MR, Yassine-Diab B, Nicolette C, Healey D, Jain R, Landry C, Yegorov O, Tcherepanova I, Monesmith T, Finke L, Sékaly RP (February 2010). “Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy”. Clinical Immunology 134 (2): 140–7. doi:10.1016/j.clim.2009.09.009. PMC 2818410. PMID 19889582. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818410/. 
  43. ^ Van Gulck E, Vlieghe E, Vekemans M, Van Tendeloo VF, Van De Velde A, Smits E, Anguille S, Cools N, Goossens H, Mertens L, De Haes W, Wong J, Florence E, Vanham G, Berneman ZN (February 2012). “mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients”. Aids 26 (4): F1-12. doi:10.1097/qad.0b013e32834f33e8. PMID 22156965. 
  44. ^ Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA (April 2020). “The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control”. Journal of Clinical Medicine 9 (4): 1225. doi:10.3390/jcm9041225. PMC 7230578. PMID 32344679. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230578/. 
  45. ^ Drug”. Default. 2020年11月30日閲覧。
  46. ^ Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott A, Flach B, Doria-Rose NA, Corbett KS, Morabito KM, O'Dell S, Schmidt SD, Swanson PA, Padilla M, Mascola JR, Neuzil KM, Bennett H, Sun W, Peters E, Makowski M, Albert J, Cross K, Buchanan W, Pikaart-Tautges R, Ledgerwood JE, Graham BS, Beigel JH (November 2020). “An mRNA Vaccine against SARS-CoV-2 - Preliminary Report”. The New England Journal of Medicine 383 (20): 1920–1931. doi:10.1056/NEJMoa2022483. PMC 7377258. PMID 32663912. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377258/. 
  47. ^ Moderna's Work on a COVID-19 Vaccine Candidate | Moderna, Inc.”. www.modernatx.com. 2020年11月30日閲覧。
  48. ^ US CDC panel recommends Moderna's Covid-19 vaccine for use in adults”. www.pharmaceutical-technology.com. 2020年12月21日閲覧。
  49. ^ a b Houseley J, Tollervey D (February 2009). “The many pathways of RNA degradation”. Cell 136 (4): 763–76. doi:10.1016/j.cell.2009.01.019. PMID 19239894. 
  50. ^ Kowalski PS, Rudra A, Miao L, Anderson DG (April 2019). “Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery”. Molecular Therapy 27 (4): 710–728. doi:10.1016/j.ymthe.2019.02.012. PMC 6453548. PMID 30846391. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453548/. 
  51. ^ Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS (February 2009). “Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells”. DNA Research 16 (1): 45–58. doi:10.1093/dnares/dsn030. PMC 2644350. PMID 19001483. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644350/. 
  52. ^ Deering RP, Kommareddy S, Ulmer JB, Brito LA, Geall AJ (June 2014). “Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines”. Expert Opinion on Drug Delivery 11 (6): 885–99. doi:10.1517/17425247.2014.901308. PMID 24665982. 
  53. ^ Golombek S, Pilz M, Steinle H, Kochba E, Levin Y, Lunter D, Schlensak C, Wendel HP, Avci-Adali M (June 2018). “Intradermal Delivery of Synthetic mRNA Using Hollow Microneedles for Efficient and Rapid Production of Exogenous Proteins in Skin”. Molecular Therapy. Nucleic Acids 11: 382–392. doi:10.1016/j.omtn.2018.03.005. PMC 5992458. PMID 29858073. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992458/. 
  54. ^ 7.19A: RNA Regulation and Antisense RNA” (英語). Biology LibreTexts (2017年6月6日). 2020年12月1日閲覧。
  55. ^ Singh SB, Phillips JW, Wang J (March 2007). “Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing”. Current Opinion in Drug Discovery & Development 10 (2): 160–6. PMID 17436551. 
  56. ^ US 2017283805, Bonci D, De Maria R, "Antisense RNA for Treating Cancer and Inhibition of Metastasis and Vectors for Antisense Sequestration", published 2017, assigned to Istituto Superiore di Sanità 
  57. ^ Wade JT (2013). “Antisense RNA”. Brenner's Encyclopedia of Genetics. doi:10.1016/B978-0-12-809633-8.06068-4. ISBN 978-0-12-809633-8 
  58. ^ Xu JZ, Zhang JL, Zhang WG (2018). “Antisense RNA: the new favorite in genetic research”. Journal of Zhejiang University. Science. B 19 (10): 739–749. doi:10.1631/jzus.B1700594. PMC 6194357. PMID 30269442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194357/. 
  59. ^ Farooqi AA, Rehman ZU, Muntane J (November 2014). “Antisense therapeutics in oncology: current status”. OncoTargets and Therapy 7: 2035–42. doi:10.2147/ott.s49652. PMC 4224095. PMID 25395862. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224095/. 
  60. ^ “Antisense Oligonucleotide-based Therapeutics”, Gene Therapy (CRC Press): pp. 365–392, (May 2000), ISBN 978-0-429-13193-6 
  61. ^ Annual Review of Pharmacology and Toxicology 0. (2007-01-10). doi:10.1146/pharmtox.2009.49.issue-1. 
  62. ^ a b c d e f g h Hanna J, Hossain GS, Kocerha J (2019). “The Potential for microRNA Therapeutics and Clinical Research” (英語). Frontiers in Genetics 10: 478. doi:10.3389/fgene.2019.00478. PMC 6532434. PMID 31156715. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532434/. 
  63. ^ a b c d e f g h i j k Devi GR (September 2006). “siRNA-based approaches in cancer therapy”. Cancer Gene Therapy 13 (9): 819–29. doi:10.1038/sj.cgt.7700931. PMID 16424918. 
  64. ^ Napoli C, Lemieux C, Jorgensen R (April 1990). “Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans”. The Plant Cell 2 (4): 279–289. doi:10.1105/tpc.2.4.279. PMC 159885. PMID 12354959. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC159885/. 
  65. ^ Hannon GJ (July 2002). “RNA interference”. Nature 418 (6894): 244–51. Bibcode2002Natur.418..244H. doi:10.1038/418244a. PMID 12110901. 
  66. ^ a b Tomari Y, Zamore PD (March 2005). “Perspective: machines for RNAi”. Genes & Development 19 (5): 517–29. doi:10.1101/gad.1284105. PMID 15741316. 
  67. ^ a b Banan M, Puri N (October 2004). “The ins and outs of RNAi in mammalian cells”. Current Pharmaceutical Biotechnology 5 (5): 441–50. doi:10.2174/1389201043376643. PMID 15544492. 
  68. ^ Song E, Lee SK, Dykxhoorn DM, Novina C, Zhang D, Crawford K, Cerny J, Sharp PA, Lieberman J, Manjunath N, Shankar P (July 2003). “Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages”. Journal of Virology 77 (13): 7174–81. doi:10.1128/JVI.77.13.7174-7181.2003. PMC 164789. PMID 12805416. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC164789/. 
  69. ^ Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J (March 2003). “RNA interference targeting Fas protects mice from fulminant hepatitis”. Nature Medicine 9 (3): 347–51. doi:10.1038/nm828. PMID 12579197. 
  70. ^ Martynov A, Didenko G, Farber B, Farber S, Cruts O (2018). “The anticancer activity of antisense micro RNA (fRNA) in combination with the lectin from Bacillus subtilis B‐7025”. Journal of Pharmacy and Pharmacology 70 (6): 732–39. doi:10.1111/jphp.12898. PMID 29520790. 
  71. ^ Lai EC (April 2002). “Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation”. Nature Genetics 30 (4): 363–4. doi:10.1038/ng865. PMID 11896390. 
  72. ^ Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (June 2003). “Expression profiling reveals off-target gene regulation by RNAi”. Nature Biotechnology 21 (6): 635–7. doi:10.1038/nbt831. PMID 12754523. 
  73. ^ a b c d e Bader AG, Brown D, Winkler M (September 2010). “The promise of microRNA replacement therapy”. Cancer Research 70 (18): 7027–30. doi:10.1158/0008-5472.CAN-10-2010. PMC 2940943. PMID 20807816. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940943/. 
  74. ^ a b Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG (July 2010). “Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34”. Cancer Research 70 (14): 5923–30. doi:10.1158/0008-5472.CAN-10-0655. PMC 2913706. PMID 20570894. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913706/. 
  75. ^ Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (June 2009). “Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model”. Cell 137 (6): 1005–17. doi:10.1016/j.cell.2009.04.021. PMC 2722880. PMID 19524505. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722880/. 
  76. ^ a b Huang H, Suslov NB, Li NS, Shelke SA, Evans ME, Koldobskaya Y, Rice PA, Piccirilli JA (August 2014). “A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore”. Nature Chemical Biology 10 (8): 686–91. doi:10.1038/nchembio.1561. PMC 4104137. PMID 24952597. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104137/. 
  77. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Zhou J, Rossi J (March 2017). “Aptamers as targeted therapeutics: current potential and challenges”. Nature Reviews. Drug Discovery 16 (3): 181–202. doi:10.1038/nrd.2016.199. PMC 5700751. PMID 27807347. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700751/. 
  78. ^ a b Guo P (December 2010). “The emerging field of RNA nanotechnology”. Nature Nanotechnology 5 (12): 833–42. Bibcode2010NatNa...5..833G. doi:10.1038/nnano.2010.231. PMC 3149862. PMID 21102465. https://www.nature.com/articles/nnano.2010.231. 
  79. ^ Gelinas AD, Davies DR, Janjic N (February 2016). “Embracing proteins: structural themes in aptamer-protein complexes”. Current Opinion in Structural Biology 36: 122–32. doi:10.1016/j.sbi.2016.01.009. PMID 26919170. 
  80. ^ Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (March 1996). “RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity”. Nucleic Acids Research 24 (6): 1029–36. doi:10.1093/nar/24.6.1029. PMC 145747. PMID 8604334. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC145747/. 
  81. ^ Chen L, Rashid F, Shah A, Awan HM, Wu M, Liu A, Wang J, Zhu T, Luo Z, Shan G (August 2015). “The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation”. Proceedings of the National Academy of Sciences of the United States of America 112 (32): 10002–7. Bibcode2015PNAS..11210002C. doi:10.1073/pnas.1502159112. PMC 4538674. PMID 26216949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538674/. 
  82. ^ Keefe AD, Pai S, Ellington A (July 2010). “Aptamers as therapeutics”. Nature Reviews. Drug Discovery 9 (7): 537–50. doi:10.1038/nrd3141. PMC 7097324. PMID 20592747. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097324/. 
  83. ^ Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P (February 2014). “Stable RNA nanoparticles as potential new generation drugs for cancer therapy”. Advanced Drug Delivery Reviews 66: 74–89. doi:10.1016/j.addr.2013.11.006. PMC 3955949. PMID 24270010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955949/. 
  84. ^ a b Tuerk C, Gold L (August 1990). “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase”. Science 249 (4968): 505–10. Bibcode1990Sci...249..505T. doi:10.1126/science.2200121. PMID 2200121. 
  85. ^ a b c Ellington AD, Szostak JW (August 1990). “In vitro selection of RNA molecules that bind specific ligands”. Nature 346 (6287): 818–22. Bibcode1990Natur.346..818E. doi:10.1038/346818a0. PMID 1697402. 
  86. ^ Guo KT, Ziemer G, Paul A, Wendel HP (April 2008). “CELL-SELEX: Novel perspectives of aptamer-based therapeutics”. International Journal of Molecular Sciences 9 (4): 668–78. doi:10.3390/ijms9040668. PMC 2635693. PMID 19325777. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635693/. 
  87. ^ Ohuchi S (2012). “Cell-SELEX Technology”. BioResearch Open Access 1 (6): 265–272. doi:10.1089/biores.2012.0253. PMC 3559206. PMID 23515081. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559206/. 
  88. ^ Cerchia L, Giangrande PH, McNamara JO, de Franciscis V (2009). “Cell-specific aptamers for targeted therapies”. Nucleic Acid and Peptide Aptamers. Methods in Molecular Biology. 535. Totowa, NJ: Humana Press. pp. 59–78. doi:10.1007/978-1-59745-557-2_5. ISBN 978-1-59745-557-2. PMC 4443708. PMID 19377980 
  89. ^ a b Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W (July 2007). “Selection of aptamers for molecular recognition and characterization of cancer cells”. Analytical Chemistry 79 (13): 4900–7. doi:10.1021/ac070189y. PMID 17530817. 
  90. ^ Xiao Z, Shangguan D, Cao Z, Fang X, Tan W (2008-02-18). “Cell-specific internalization study of an aptamer from whole cell selection”. Chemistry 14 (6): 1769–75. doi:10.1002/chem.200701330. PMID 18092308. 
  91. ^ Phillips JA, Lopez-Colon D, Zhu Z, Xu Y, Tan W (July 2008). “Applications of aptamers in cancer cell biology”. Analytica Chimica Acta 621 (2): 101–8. doi:10.1016/j.aca.2008.05.031. PMID 18573375. 
  92. ^ a b c Kohn DB, Bauer G, Rice CR, Rothschild JC, Carbonaro DA, Valdez P, Hao QL, Zhou C, Bahner I, Kearns K, Brody K, Fox S, Haden E, Wilson K, Salata C, Dolan C, Wetter C, Aguilar-Cordova E, Church J (July 1999). “A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children”. Blood 94 (1): 368–71. doi:10.1182/blood.V94.1.368.413a47_368_371. PMID 10381536. 
  93. ^ Khedri M, Rafatpanah H, Abnous K, Ramezani P, Ramezani M (December 2015). “Cancer immunotherapy via nucleic acid aptamers”. International Immunopharmacology 29 (2): 926–936. doi:10.1016/j.intimp.2015.10.013. PMID 26603636. 
  94. ^ Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (March 2011). “Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration”. Proceedings of the National Academy of Sciences of the United States of America 108 (10): 3900–5. Bibcode2011PNAS..108.3900S. doi:10.1073/pnas.1016197108. PMC 3054025. PMID 21368158. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3054025/. 
  95. ^ Zhang J, Smaga LP, Satyavolu NS, Chan J, Lu Y (December 2017). “DNA Aptamer-Based Activatable Probes for Photoacoustic Imaging in Living Mice”. Journal of the American Chemical Society 139 (48): 17225–17228. doi:10.1021/jacs.7b07913. PMC 5724028. PMID 29028325. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724028/. 
  96. ^ Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA, Clary BM (January 2010). “In vivo selection of tumor-targeting RNA motifs”. Nature Chemical Biology 6 (1): 22–4. doi:10.1038/nchembio.277. PMC 2795795. PMID 19946274. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795795/. 
  97. ^ Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (August 2006). “Aptamers evolved from live cells as effective molecular probes for cancer study”. Proceedings of the National Academy of Sciences of the United States of America 103 (32): 11838–43. doi:10.1073/pnas.0602615103. PMC 1567664. PMID 16873550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567664/. 
  98. ^ Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L, Smith JE, Tan W (June 2008). “Molecular recognition of small-cell lung cancer cells using aptamers”. ChemMedChem 3 (6): 991–1001. doi:10.1002/cmdc.200800030. PMC 3544301. PMID 18338423. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544301/. 
  99. ^ Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR (December 2004). “Pegaptanib for neovascular age-related macular degeneration”. The New England Journal of Medicine 351 (27): 2805–16. doi:10.1056/NEJMoa042760. PMID 15625332. http://dare.uva.nl/personal/pure/en/publications/pegaptanib-for-neovascular-agerelated-macular-degeneration(1a482e79-2a38-4336-85b2-eef4b6e507a9).html. 
  100. ^ Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S, Lau WK, Cao Y, Yang Z, Lu C, He X, Au DW, Pan X, Zhang BT, Lu C, Zhang H, Yue K, Qian A, Shang P, Xu J, Xiao L, Bian Z, Tan W, Liang Z, He F, Zhang L, Lu A, Zhang G (March 2015). “Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy”. Nature Medicine 21 (3): 288–94. doi:10.1038/nm.3791. PMC 5508976. PMID 25665179. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508976/. 
  101. ^ Hoellenriegel J, Zboralski D, Maasch C, Rosin NY, Wierda WG, Keating MJ, Kruschinski A, Burger JA (February 2014). “The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization”. Blood 123 (7): 1032–9. doi:10.1182/blood-2013-03-493924. PMC 4123413. PMID 24277076. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123413/. 
  102. ^ Mousa SA, Mousa SS (June 2010). “Current status of vascular endothelial growth factor inhibition in age-related macular degeneration”. BioDrugs 24 (3): 183–94. doi:10.2165/11318550-000000000-00000. PMID 20210371. 
  103. ^ Ferrara N, Adamis AP (June 2016). “Ten years of anti-vascular endothelial growth factor therapy”. Nature Reviews. Drug Discovery 15 (6): 385–403. doi:10.1038/nrd.2015.17. PMID 26775688. https://escholarship.org/uc/item/8fc8m0vp. 
  104. ^ a b Healy JM, Lewis SD, Kurz M, Boomer RM, Thompson KM, Wilson C, McCauley TG (December 2004). “Pharmacokinetics and biodistribution of novel aptamer compositions”. Pharmaceutical Research 21 (12): 2234–46. doi:10.1007/s11095-004-7676-4. PMID 15648255. 
  105. ^ a b Abeydeera ND, Egli M, Cox N, Mercier K, Conde JN, Pallan PS, Mizurini DM, Sierant M, Hibti FE, Hassell T, Wang T, Liu FW, Liu HM, Martinez C, Sood AK, Lybrand TP, Frydman C, Monteiro RQ, Gomer RH, Nawrot B, Yang X (September 2016). “Evoking picomolar binding in RNA by a single phosphorodithioate linkage”. Nucleic Acids Research 44 (17): 8052–64. doi:10.1093/nar/gkw725. PMC 5041495. PMID 27566147. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041495/. 
  106. ^ Henry SP, Giclas PC, Leeds J, Pangburn M, Auletta C, Levin AA, Kornbrust DJ (May 1997). “Activation of the alternative pathway of complement by a phosphorothioate oligonucleotide: potential mechanism of action”. The Journal of Pharmacology and Experimental Therapeutics 281 (2): 810–6. PMID 9152389. 
  107. ^ Farman CA, Kornbrust DJ (2016-11-17). “Oligodeoxynucleotide studies in primates: antisense and immune stimulatory indications”. Toxicologic Pathology 31 Suppl: 119–22. doi:10.1080/01926230390174995. PMID 12597439. 
  108. ^ Avci-Adali M, Steinle H, Michel T, Schlensak C, Wendel HP (2013-07-23). “Potential capacity of aptamers to trigger immune activation in human blood”. PLOS ONE 8 (7): e68810. Bibcode2013PLoSO...868810A. doi:10.1371/journal.pone.0068810. PMC 3720859. PMID 23935890. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720859/. 
  109. ^ Mena A, Nichani AK, Popowych Y, Godson DL, Dent D, Townsend HG, Mutwiri GK, Hecker R, Babiuk LA, Griebel P (October 2003). “Innate immune responses induced by CpG oligodeoxyribonucleotide stimulation of ovine blood mononuclear cells”. Immunology 110 (2): 250–7. doi:10.1046/j.1365-2567.2003.01722.x. PMC 1783041. PMID 14511239. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783041/. 
  110. ^ Musumeci D, Montesarchio D (November 2012). “Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer”. Pharmacology & Therapeutics 136 (2): 202–15. doi:10.1016/j.pharmthera.2012.07.011. PMID 22850531. 
  111. ^ Soule EE, Bompiani KM, Woodruff RS, Sullenger BA (February 2016). “Targeting Two Coagulation Cascade Proteases with a Bivalent Aptamer Yields a Potent and Antidote-Controllable Anticoagulant”. Nucleic Acid Therapeutics 26 (1): 1–9. doi:10.1089/nat.2015.0565. PMC 4753633. PMID 26584417. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753633/. 
  112. ^ Ganson NJ, Povsic TJ, Sullenger BA, Alexander JH, Zelenkofske SL, Sailstad JM, Rusconi CP, Hershfield MS (May 2016). “Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer”. The Journal of Allergy and Clinical Immunology 137 (5): 1610–1613.e7. doi:10.1016/j.jaci.2015.10.034. PMC 5819876. PMID 26688515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819876/. 
  113. ^ Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z, Armstrong PW, Steg PG, Bode C, Cohen MG, Buller C, Laanmets P, Valgimigli M, Marandi T, Fridrich V, Cantor WJ, Merkely B, Lopez-Sendon J, Cornel JH, Kasprzak JD, Aschermann M, Guetta V, Morais J, Sinnaeve PR, Huber K, Stables R, Sellers MA, Borgman M, Glenn L, Levinson AI, Lopes RD, Hasselblad V, Becker RC, Alexander JH (January 2016). “Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial”. Lancet 387 (10016): 349–356. doi:10.1016/s0140-6736(15)00515-2. PMID 26547100. 
  114. ^ Sharma TK, Bruno JG, Dhiman A (2017-03-01). “ABCs of DNA aptamer and related assay development”. Biotechnology Advances 35 (2): 275–301. doi:10.1016/j.biotechadv.2017.01.003. PMID 28108354. 
  115. ^ Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F (July 1991). “Kinetic characterization of ribonuclease-resistant 2'-modified hammerhead ribozymes”. Science 253 (5017): 314–7. Bibcode1991Sci...253..314P. doi:10.1126/science.1857967. PMID 1857967. 
  116. ^ Vater A, Klussmann S (March 2003). “Toward third-generation aptamers: Spiegelmers and their therapeutic prospects”. Current Opinion in Drug Discovery & Development 6 (2): 253–61. PMID 12669461. 
  117. ^ a b Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G, Scardino E, Fay WP, Sullenger BA (November 2004). “Antidote-mediated control of an anticoagulant aptamer in vivo”. Nature Biotechnology 22 (11): 1423–8. doi:10.1038/nbt1023. PMID 15502817. 
  118. ^ Aaldering LJ, Tayeb H, Krishnan S, Fletcher S, Wilton SD, Veedu RN (2015-04-03). “Smart functional nucleic acid chimeras: enabling tissue specific RNA targeting therapy”. RNA Biology 12 (4): 412–25. doi:10.1080/15476286.2015.1017234. PMC 4615226. PMID 25849197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615226/. 


「RNA治療」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  RNA治療のページへのリンク

辞書ショートカット

すべての辞書の索引

「RNA治療」の関連用語

RNA治療のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



RNA治療のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのRNA治療 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS