NC (計算複雑性理論)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > NC (計算複雑性理論)の意味・解説 

NC (計算複雑性理論)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/10/13 14:37 UTC 版)

計算複雑性理論において、NC(Nick's Class)とは多項式個数のプロセッサで構成される並列計算機で,問題サイズの対数について多項式時間で解ける決定問題複雑性クラスである。換言すれば、NC に属する問題は、O(nk)個の並列プロセッサを使って O((log n)c) の時間で解ける(ck は定数)。"Nick's Class" という用語はスティーブン・クックの造語で、計算機科学者 Nick Pippenger にちなんでいる。

クラス P と同様、NC に属する問題は並列計算機で効率的に解くことができると見なされている。並列計算機は通常の計算機でシミュレート可能であるため、NCP に含まれる。NC = P かどうかは判っていないが、おそらく違うだろうと言われている。つまり、多項式時間で解ける問題には「本質的に逐次的」なものがあり、並列化によって高速化できないと考えられている。NP完全問題は効率的に解けないと考えられているように、P完全問題は「本質的に並列化不可能」または「本質的に逐次的」であると考えられている。

この定義における並列計算機は「並列ランダムアクセス機械」(PRAM)である。これは、共有メモリ型の並列計算機の計算モデルで、全プロセッサがどのメモリ位置についても一定の時間でアクセスできるものと定義されている。NC の定義は PRAM において複数のプロセッサが同じメモリ位置にアクセスした場合の対処方法には影響されない。この排他モデルとして CRCW、CREW、EREW がある。詳しくはPRAMを参照されたい。

NC の別の定義として、対数多項式の深さと多項式個の論理ゲートからなる一様ブール回路で解ける決定問題の集合という定義もある。

NCi は、多項式個の論理ゲートからなる一様ブール回路(深さ O((log n)i))で解ける決定問題の集合である。また、多項式個のプロセッサからなる並列計算機上で O((log n)i) 時間で解ける決定問題の集合でもある。

NC クラス群と L および NL の関係は Papadimitriou 1994, Theorem 16.1 により次のように示される。

同様に、NCi は、交替性チューリングマシンで O(log n) の領域と (log n)O(1) 回の交替で解ける決定問題の集合と同じである。

参考文献


「NC (計算複雑性理論)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「NC (計算複雑性理論)」の関連用語

NC (計算複雑性理論)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



NC (計算複雑性理論)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのNC (計算複雑性理論) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS