0-形式とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 0-形式の意味・解説 

微分形式

(0-形式 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/17 02:02 UTC 版)

数学における微分形式(びぶんけいしき、: differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。

概要

エリ・カルタンによって微分方程式幾何学的に捕らえようとする試みから生まれた微分形式は、解析学や幾何学のいろいろな概念や公式を統一的な視点からまとめ、形式的な計算により多くの結果を得、多様体などの図形を調べるのにも非常に強力な道具になっていった。

n 次元ユークリッド空間において、座標が (x1, x2, …, xn) で与えられているとき、n 変数関数 f(x1, x2, …, xn) を微分 0 形式といい、 余接ベクトル場 f1 dx1 + f2 dx2 + ⋯ + fn dxn の事を 微分 1 形式という。係数となっているfk は変数を省略してあるが関数である。これは関数の全微分で現れる式と同じである。2 次以上の微分形式は微分形式同士をテンソル積でかけ合わせることにより得られる。例えば p 次の微分形式 ξq 次の微分形式 η のテンソル積は

多様体上で座標近傍を張り合わせるのにあわせて微分形式も張り合わせていくことができる

n 次元微分可能多様体 M の座標近傍系 S = {(Uλ, ϕλ)  |  λ ∈ Λ} の任意の 2 つの座標近傍 (U1, ϕ1), (U2, ϕ2) に対し、U1U2 が空でないならば座標変換

N 上の微分形式に M 上の微分形式を対応させる写像

微分可能多様体 M, N に対し Cs 級写像

カテゴリ




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「0-形式」の関連用語

0-形式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



0-形式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの微分形式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS