クルルの定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > クルルの定理の意味・解説 

クルルの定理

(極大イデアルの存在 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/05/11 02:26 UTC 版)

数学、とくに環論においてクルルの定理 (Krull's theorem)とは、零環でない[注釈 1]は少なくとも1つの極大イデアルを持つという定理である[1]。1929年にヴォルフガング・クルル (Wolfgang Krull) によって超限帰納法を用いて証明された[2]。この定理はツォルンの補題を用いると簡単に証明できるが、実際はツォルンの補題(そして選択公理)と同値である[3]

変種

  • 非可換環における極大左イデアルと極大右イデアルに対しても同様の定理が成り立つ。
  • 擬環における正則イデアル英語版に対して定理が成り立つ。
  • 同様の方法で証明できるわずかに強い(しかし同値な)結果は次のようなものである:
R を環とし、IR真のイデアルとする。このとき I を含む R の極大イデアルが存在する。
この結果において I として零イデアル (0) を取れば元の定理を得る。逆に、元の定理を R/I に適用すればこの結果が導かれる。
この結果を直接証明するには、I を含む R のすべての真のイデアルからなる集合 S を考える。集合 SI ∈ S であるから空でない。さらに、S の任意の鎖 T に対して、T のイデアルの和集合は再びイデアル J であり、1 を含まないイデアルの和集合は 1 を含まないから、J ∈ S である。ツォルンの補題によって、S は極大元 M を持つ。この MI を含む極大イデアルである。

クルルの単項イデアル定理

よくクルルの定理と呼ばれる別の定理が存在する:

R をネーター環とし、aR零因子でも単元でもない元とする。このとき a を含むすべての極小素イデアル P高さ 1 を持つ。

脚注

  1. ^ この記事では環は単位元1を持つものとする。

参考文献

  1. ^ Basic Algebra: Groups, Rings and Fields, p. 90, - Google ブックス
  2. ^ W. Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingungen, Mathematische Annalen 10 (1929), 729–744.
  3. ^ Wilfrid Hodges, Krull Implies Zorn, Journal of the London Mathematical Society s2-19 (1979), 285-287



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「クルルの定理」の関連用語

クルルの定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



クルルの定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのクルルの定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS