弱いゴールドバッハ予想とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 弱いゴールドバッハ予想の意味・解説 

弱いゴールドバッハ予想

(弱いゴールドバッハの予想 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/15 22:49 UTC 版)

弱いゴールドバッハ予想(よわいゴールドバッハよそう、英語: Goldbach's weak conjecture)とはゴールドバッハの予想に類似した素数に関する数論予想。次のように表現される。

5 より大きい奇数は 3 個の素数の和で表せる。

3 個の素数は同じ数であってもよい。

ゴールドバッハ予想が証明できれば弱いゴールドバッハ予想も証明できる(後述)。しかし弱いゴールドバッハ予想が証明できても(それだけでは)ゴールドバッハ予想は証明できない。ゴールドバッハ予想からこの予想は導かれるが、その逆はないので「弱い」という語を冠している。

大きな奇数ほどその数よりも小さな素数がより多く存在し、それらの組み合わせもより多くなるので、この予想は多くの数学者によって正しいと考えられている。

2013年ハラルド・ヘルフゴットは弱いゴールドバッハ予想を証明したとする論文を発表し、現在広く受け入れられている[1][2]

概要

小さな奇数を順に 3 個の素数の和で表すと以下のようになる。

  • 7 = 2 + 2 + 3
  • 9 = 2 + 2 + 5 = 3 + 3 + 3
  • 11 = 2 + 2 + 7 = 3 + 3 + 5
  • 13 = 3 + 3 + 7 = 3 + 5 + 5
  • 15 = 2 + 2 + 11 = 3 + 5 + 7 = 5 + 5 + 5
  • 17 = 2 + 2 + 13 = 3 + 3 + 11 = 5 + 5 + 7
  • 19 = 3 + 3 + 13 = 3 + 5 + 11 = 5 + 7 + 7
  • 21 = 2 + 2 + 17 = 3 + 5 + 13 = 5 + 5 + 11 = 7 + 7 + 7
  • 23 = 2 + 2 + 19 = 3 + 3 + 17 = 5 + 5 + 13 = 5 + 7 + 11

3 個の素数の和は 6 以上なので、5 以下の奇数を 3 個の素数の和で表すことはできない。また 3 個の奇素数の和は 9 以上なので、7 は 3 個の奇素数の和で表すことはできない。

「7 より大きい奇数は 3 個の奇素数の和で表せる」という予想もある。これはゴールドバッハ予想の「4 より大きい偶数は 2 個の奇素数の和で表せる」という命題と類似している。

3 個の素数のうち偶数の素数である 2 は 2 個か 0 個であり、残りの 1 個もしくは 3 個全てが奇素数である。

7 以上の奇数が n を 自然数、p を奇素数として




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「弱いゴールドバッハ予想」の関連用語

弱いゴールドバッハ予想のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



弱いゴールドバッハ予想のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの弱いゴールドバッハ予想 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS