一粒子状態と多粒子状態
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/18 15:59 UTC 版)
同種粒子は区別することができないため、それぞれの粒子に「位置」を割り振ることができない。なぜなら位置を割り振った時点で粒子が区別できてしまうからである。この性質を不可弁別性という。よって一般に粒子の位置の関数である波動関数を用いる方法は少し不自然なものになる。 そこで占有数を用いた方法で同種多粒子系を表現する方法が一般に用いられる。この方法は数表示(占有数表示)の方法と呼ばれる。この方法では同種多粒子系を、「一粒子状態がいくつかあって、その一粒子状態にある同種粒子の個数(占有数)を数える」と考える。占有数という名前からわかるように、これは一粒子状態を「座席」のように扱い、その座席に座る同種粒子の個数を数えるという考えである。この方法は波動関数を用いる方法と同じ情報をもっている。なお「一粒子状態」とは言っているが、その状態の同種粒子の数は0または 1 とは限らない。たとえばボゾンの場合はある一粒子状態には粒子がいくつでも入ることができる。このボゾンの性質からも、この方法が便利であることがわかる。
※この「一粒子状態と多粒子状態」の解説は、「同種粒子」の解説の一部です。
「一粒子状態と多粒子状態」を含む「同種粒子」の記事については、「同種粒子」の概要を参照ください。
- 一粒子状態と多粒子状態のページへのリンク