レムニスケート周率とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > レムニスケート周率の意味・解説 

レムニスケート周率

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/10/31 22:15 UTC 版)

レムニスケート周率(レムニスケートしゅうりつ、: lemniscate constant)とは、円周率の、ベルヌーイのレムニスケートにおける対応物である。レムニスケートを研究する過程で「発見」され、特にカール・フリードリヒ・ガウスが深く研究したとされる。

数学的な記述

通常は、ギリシャ文字のパイの小文字 π の異字体 ϖ(オメガの小文字 (ω) の上に横棒を1本つけたような形)で表され、実際の数値は、

ϖ = 2.622057554292119810464839589891...(オンライン整数列大辞典の数列 A062539)

(小数点以下30桁まで)である。なお、長さのパラメータ単位を1としたとき、レムニスケートの周長は、(の周長が、円周率の倍の値であるのと同様に)レムニスケート周率の倍の値となる。

レムニスケート周率は、第一種完全楕円積分で表され、無理数でもあり、超越数でもある。

すなわち、次の式により求めることができる。




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「レムニスケート周率」の関連用語

レムニスケート周率のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



レムニスケート周率のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのレムニスケート周率 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS