ルベーグ測度の正則性定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ルベーグ測度の正則性定理の意味・解説 

ルベーグ測度の正則性定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2013/01/11 11:56 UTC 版)

数学の分野におけるルベーグ測度の正則性定理(ルベーグそくどのせいそくせいていり、: Regularity theorem for Lebesgue measure)とは、実数直線上のルベーグ測度正則測度であるということについて述べた、測度論の分野の一結果である。くだけた言い方をすれば、実数直線に含まれるすべてのルベーグ可測部分集合は、「近似的に」かつ「近似的に」である、ということをこの定理は意味している。

定理の内容

実数直線 R 上のルベーグ測度は、正則測度である。すなわち、R に含まれるすべてのルベーグ可測部分集合と、すべての ε > 0 に対して、次を満たすような R の部分集合 CU が存在する。

  • C は閉;
  • U は開;
  • C ⊆ A ⊆ U;
  • U \ C のルベーグ測度は、ε より厳密に小さい。

さらに、A が有限ルベーグ測度を持つなら、Cコンパクトであるように選ぶことが出来る(したがって、ハイネ・ボレルの定理により、閉かつ有界であるように選ぶことが出来る)。

系:ルベーグ可測集合の構造

A がルベーグ可測な R の部分集合であるなら、あるボレル集合 B零集合 N が存在して、A はそれらの対称差で表される。すなわち、

が成立する。

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ルベーグ測度の正則性定理」の関連用語

ルベーグ測度の正則性定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ルベーグ測度の正則性定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのルベーグ測度の正則性定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS