ハルトークスの定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ハルトークスの定理の意味・解説 

ハルトークスの定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2015/11/13 13:20 UTC 版)

数学におけるハルトークスの定理(ハルトークスのていり、: Hartogs' theorem)とは、フリードリヒ・ハルトークスによって証明された、多変数複素函数論において基礎となる一結果である。大雑把には、「別々に解析的」な函数は連続であるということが述べられている。正確に言うと、 が他の変数を定数として固定したときの各変数 zi, 1 ≤ in について解析的な函数であるなら、F連続函数であるということが述べられている。

この結果のとして、F は実は n 変数の意味で解析函数である(すなわち、局所的にテイラー展開を持つ)というものがある。したがって、多変数複素函数論において「別々に解析的であること」と「解析性」は同一の概念となる。

さらに函数が連続(あるいは有界)であるという仮定を付け加えると、証明がはるかに容易となり、この形はオズグットの補題として知られている。

ここで実変数に対してこの定理と類似の結果は得られないことに注意されたい。すなわち、ある函数 が各変数について微分可能(あるいは解析的)であっても、 は必ずしも連続とはならない。二次元の場合のその反例として、次の函数が挙げられる。

さらに と定義すると、この函数は原点において および についての well-defined な偏微分を持つが、f は原点において連続ではない。実際、直線 および のそれぞれに沿った極限は異なる値となり、f を原点において連続となるように定義することはできない。

参考文献

  • Steven G. Krantz. Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, Rhode Island, 1992.

この記事は、クリエイティブ・コモンズ・ライセンス 表示-継承 3.0 非移植のもと提供されているオンライン数学辞典『PlanetMath』の項目Hartogs's theorem on separate analyticityの本文を含む




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ハルトークスの定理」の関連用語

ハルトークスの定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ハルトークスの定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのハルトークスの定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS