デ・フィネッティの定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > デ・フィネッティの定理の意味・解説 

デ・フィネッティの定理

(デ・フィネッティの表現定理 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/14 14:18 UTC 版)

デ・フィネッティの定理: de Finetti's theorem)またはデ・フィネッティの表現定理: de Finetti's representation theorem)とは確率論における定理であり、ある潜在変数に対し認識論的確率分布が与えられたという条件の下で、交換可能英語版な観測値は条件付き独立であるということを述べる。定理の名前は発見者の一人であるブルーノ・デ・フィネッティに因む。

交換可能なベルヌーイ変数の列の特別な場合として、独立同分布 (i.i.d.) なベルヌーイ列の「混合」した列がある。交換可能な列の個々の確率変数はそれら自身では i.i.d. ではなく、交換可能なだけだが、その根底には i.i.d. な確率変数の族が存在する。

したがって、列が交換可能であるために観測値が i.i.d. である必要はないが、その背景には一般には観測可能でない i.i.d. である量が存在する。交換可能な列は i.i.d. な列の混合であり、それは必ずしも i.i.d. ではない。

背景

ベイズ主義の統計学者はしばしば与えられたデータを条件とした確率変数の条件付き確率分布を求める。確率変数の交換可能性英語版はデ・フィネッティによって導入された。デ・フィネッティの定理は独立性と交換可能性の間の数学的関係を説明する[1]

確率変数 X の無限列

カテゴリ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「デ・フィネッティの定理」の関連用語




4
30% |||||







デ・フィネッティの定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



デ・フィネッティの定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのデ・フィネッティの定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS