ゼロ‐ぎょうれつ〔‐ギヤウレツ〕【ゼロ行列】
読み方:ぜろぎょうれつ
⇒零行列
零行列
(ゼロ行列 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/22 07:31 UTC 版)
数学において、零行列(ゼロぎょうれつ、れいぎょうれつ、zero matrix, null matrix)とは、その成分(要素)が全て 0 の行列。O あるいは 0 と記述されることが多い。
また、下付き添字によって行列の型を明記することもある。
自明な線形変換である零作用素を表す行列であり、正方行列の場合には行列環の零元を与えている。
性質
以下、l, m, n は任意の自然数とする。
- m 行 n 列の零行列 O と m 行 n 列の任意の行列 A の和は A + O = O + A = A となり、差は A − O = A, O − A = −A となる。
- l 行 m 列の零行列 O と m 行 n 列の任意の行列 A の積 OA は、l 行 n 列の零行列となる。
- l 行 m 列の任意の行列 B と m 行 n 列の零行列 O の積 BO は、l 行 n 列の零行列となる。
これらのことから、n 次の正方行列全体のなす環を考えているとき、零行列はその零元になる。
関連項目
ゼロ行列
- ゼロ行列のページへのリンク