ストーン=ワイエルシュトラスの定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/10/14 05:03 UTC 版)
数学におけるストーン・ワイエルシュトラスの定理(英語: Stone–Weierstrass theorem)とは、局所コンパクト空間上の連続関数の代数系における部分代数の稠密性に関する定理である。
ワイエルシュトラスの近似定理がその原型であり、1937年にマーシャル・ストーンによって大幅に一般化された現在の形の結果が得られた。
ストーン・ワイエルシュトラスの定理は、局所コンパクトハウスドルフ空間 X 上定められた複素数値の連続関数の代数系 C(X) の部分代数 A が一様収束の位相に関して稠密になるための十分条件として、
- Aの元によって X の任意の異なる点が分離されること
- 関数の複素共役をとる操作について A が閉じていること
の二つが両立していること、を挙げている。Xが実閉区間であるとき多項式関数のなす代数系は上記の条件を共に満たすため、ワイエルシュトラスの近似定理はストーン・ワイエルシュトラスの定理の特別な場合になっている。
ワイエルシュトラスの近似定理
ワイエルシュトラスの近似定理は、閉区間上のどんな連続関数も多項式関数によって任意の精度で一様に近似できることを述べている。
- f を閉区間 [a, b] 上の連続関数とせよ。任意の ε > 0 について多項式 p であって、[a,b] の任意の点 x に対し| ƒ(x) − p(x) | < ε を満たすようなものが存在する。
言い換えると閉区間上の連続関数のなす集合において、多項式からなる部分集合は一様ノルム(の誘導する距離)に関して稠密である。したがって、そのような連続関数に対しては一様収束する多項式列が存在する。ワイエルシュトラスは