集合の分割 分割の細分

集合の分割

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/19 14:18 UTC 版)

分割の細分

集合 X の分割 π が集合 X の分割 ρ細分 (refinement) であるとは、π の個々の元が全て ρ のいずれかの元の部分集合であることを言う。大雑把に言えば、π の方が p よりも分割が細かい。これを πρ と表記することもある。

X の分割の集合におけるこの「より細かい」関係は半順序であり(そのため "≤" で表すのが適当)、実のところ完備束である。例えば、X = {1, 2, 3, 4} の「分割束」には15の元があり、以下のハッセ図で表される。

もう1つの例として、同値関係の観点から分割を細分化する方法を述べる。D を一般的なトランプの52枚のカードの集合とする。D における「色が同じ」という関係を ~C などと表記する。このとき2つの同値類、{赤いカード} という集合と {黒いカード} という集合が得られる。この ~C に対応した2ブロックの分割には「スートが同じ」という関係 ~S による細分が存在し、4つの同値類 {スペード}、{ダイヤ}、{ハート}、{クラブ} が得られる。

非交差な分割

自然数の集合 N = {1, 2, ..., n} の同値関係 ~ に対応した分割が非交差 (noncrossing) であるとは、N 内のそれぞれ別の数 abcda < b < c < d という大小関係で、しかも a ~ c および b ~ d ということがない場合である。 上記のX = {1, 2, 3, 4} では、13/24のみが非交差ではない分割である. 有限集合の非交差な分割の束は、自由確率論において重要であることが近年わかってきた。2つの束の結びをとる操作が合致しないため、これらは全ての分割の束の部分集合を形成するが、部分束ではない。

各種分割の数え上げ

n 個の元を持つ集合の分割の総数はベル数 Bn である。n の小さいベル数を列挙すると、B0 = 1、B1 = 1、B2 = 2、B3 = 5、B4 = 15、B5 = 52、B6 = 203 となっている。ベル数は次の漸化式で表される。

そして、次のような指数型母関数が存在する。

n 個の元を持つ集合を k 個のブロックに分ける分割の総数は、第2種スターリング数 S(n, k) である。

n 個の元を持つ集合の非交差な分割の総数はカタラン数 Cn であり、次の式で表される。


  1. ^ Brualdi, Richard A. (2004). Introductory Combinatorics (4th edition ed.). Pearson Prentice Hall. pp. 44-45. ISBN 0131001191 
  2. ^ a b 松坂和夫 『集合・位相入門』岩波書店、1968年。 p. 57
  3. ^ Schechter, Eric (1997). Handbook of Analysis and Its Foundations. Academic Press. p. 54. ISBN 0126227608 


「集合の分割」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「集合の分割」の関連用語

集合の分割のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



集合の分割のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの集合の分割 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS