バイオインフォマティクス ネットワークとシステムバイオロジー

バイオインフォマティクス

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/18 06:15 UTC 版)

ネットワークとシステムバイオロジー

タンパク質間の相互作用は、ネットワークによる解析と視覚化が行われる場合が多い。 このネットワークは、梅毒やその他の疾患の原因物質であるトレポネーマパリダムからのタンパク質間相互作用で構成されている。

ネットワーク分析

ネットワーク分析は、代謝ネットワークやタンパク質間相互作用ネットワークなどの生物学的ネットワークの関係を理解することを目的としている。生物学的ネットワークは単一のタイプの分子またはエンティティ(遺伝子など)から構築される。

システム生物学

システム生物学では、細胞内における複雑なプロセスの関係性を分析し視覚化するために、代謝プロセスを担う代謝産物や酵素のネットワークやシグナル伝達経路、遺伝子調節ネットワークといった細胞システムをコンピューターシミュレーションを用いて解析する研究が進められている。

分子相互作用ネットワーク

2020年現在、数万を超えるタンパク質について、X線結晶学およびタンパク質核磁気共鳴分光法(タンパク質NMR)によって3次元構造が決定されている。

テキスト解析

計算言語学による文献分析では、計算と統計に基づく言語学的解析を通じて、増大するテキストリソースからマイニングすることを目的としている。

画像・動画解析

大量の情報量の多い生物医学画像の処理や定量化、分析を加速または完全に自動化するために計算技術を利用する研究も進められている。画像解析システムにおいては、大規模で複雑な画像セットから測定を行うための精度や客観性、そして処理速度の向上が重要になってくる。理想的には、分析システムの発達により、様々なケースにおいて人が画像や動画の判断をする必要がなくなる。このような画像処理システム自体は生物医学分野に固有のものではないが、例えば疾患の診断や研究においてはそれらの分野に特化した画像解析技術が重要になる。具体的な応用分野としては、以下のものが挙げられる。

  • ハイスループットで高精度な細胞内局在の定量化(ハイコンテンツスクリーニング、細胞組織病理学、バイオイメージ情報学)
  • 形態計測学
  • 臨床画像の分析と視覚化
  • 生きている動物が呼吸する際、肺のリアルタイムの気流パターンを決定する
  • 実験動物の拡張ビデオ録画から行動観察を行う
  • 代謝活性測定のための赤外線測定
  • DNAマッピングにおけるクローンの重複の推測(たとえばSulstonスコア)

バイオインフォマティクスとコンピュータ

プログラミング言語

研究用プログラムの開発に使われる言語としては他に以下のようなものがあげられる。これらの殆どにそれぞれバイオインフォマティクス用のライブラリが開発されている。

  • C++ - C言語を元に新しいプログラミングパラダイムを取り入れて開発された言語。
  • Java - オブジェクト指向および仮想マシンという概念を取り入れた言語である。BioJava というパッケージが存在する。
  • Perl - 汎用インタプリタ言語である。BioPerl というパッケージが存在する。
  • Python - 汎用インタプリタ言語である。BioPython というパッケージが存在する。
  • Ruby - Javaと同じくオブジェクト指向プログラミング言語である。BioRuby というパッケージが存在する。
  • R言語 - オブジェクト指向の数値解析言語。行列処理・文字列処理・グラフ機能に優れたフリーソフトウェアFDA公認。CRANシステムで日々機能強化され、Bioconductor ネットワークにパッケージが集約されている。

  1. ^ Lesk (2013年7月26日). “Bioinformatics”. Encyclopaedia Britannica. 2017年4月17日閲覧。
  2. ^ a b Sim, A. Y. L.; Minary, P.; Levitt, M. (2012). “Modeling nucleic acids”. Current Opinion in Structural Biology 22 (3): 273-78. doi:10.1016/j.sbi.2012.03.012. PMC 4028509. PMID 22538125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028509/. 
  3. ^ Dawson, W. K.; Maciejczyk, M.; Jankowska, E. J.; Bujnicki, J. M. (2016). “Coarse-grained modeling of RNA 3D structure”. Methods 103: 138-56. doi:10.1016/j.ymeth.2016.04.026. PMID 27125734. 
  4. ^ Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A. E.; Kolinski, A. (2016). “Coarse-Grained Protein Models and Their Applications”. Chemical Reviews 116 (14): 7898-936. doi:10.1021/acs.chemrev.6b00163. PMID 27333362. 
  5. ^ Wong, K. C. (2016). Computational Biology and Bioinformatics: Gene Regulation. CRC Press/Taylor & Francis Group. ISBN 9781498724975 
  6. ^ Joyce, A. P.; Zhang, C.; Bradley, P.; Havranek, J. J. (2015). “Structure-based modeling of protein: DNA specificity”. Briefings in Functional Genomics 14 (1): 39-49. doi:10.1093/bfgp/elu044. PMC 4366589. PMID 25414269. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366589/. 
  7. ^ Spiga, E.; Degiacomi, M. T.; Dal Peraro, M. (2014). “New Strategies for Integrative Dynamic Modeling of Macromolecular Assembly”. In Karabencheva-Christova, T.. Biomolecular Modelling and Simulations. Advances in Protein Chemistry and Structural Biology. 96. Academic Press. pp. 77-111. doi:10.1016/bs.apcsb.2014.06.008. ISBN 9780128000137. PMID 25443955 
  8. ^ Ciemny, Maciej; Kurcinski, Mateusz; Kamel, Karol; Kolinski, Andrzej; Alam, Nawsad; Schueler-Furman, Ora; Kmiecik, Sebastian (2018-05-04). “Protein-peptide docking: opportunities and challenges” (英語). Drug Discovery Today 23 (8): 1530-37. doi:10.1016/j.drudis.2018.05.006. ISSN 1359-6446. PMID 29733895. 
  9. ^ a b Hogeweg P (2011). “The Roots of Bioinformatics in Theoretical Biology”. PLOS Computational Biology 7 (3): e1002021. Bibcode2011PLSCB...7E2021H. doi:10.1371/journal.pcbi.1002021. PMC 3068925. PMID 21483479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068925/. 
  10. ^ Bioinformatica: een werkconcept. 1. Kameleon. (1970). pp. 28-29. 
  11. ^ Hogeweg P (1978). “Simulating the growth of cellular forms”. Simulation 31 (3): 90-96. doi:10.1177/003754977803100305. 
  12. ^ Moody, Glyn (2004). Digital Code of Life: How Bioinformatics is Revolutionizing Science, Medicine, and Business. ISBN 978-0-471-32788-2. https://archive.org/details/digitalcodeoflif0000mood 
  13. ^ Dayhoff, M.O. (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, 215 pp.
  14. ^ “Evolution of the structure of ferredoxin based on living relics of primitive amino Acid sequences”. Science 152 (3720): 363-366. (1966). Bibcode1966Sci...152..363E. doi:10.1126/science.152.3720.363. PMID 17775169. 
  15. ^ “Kabat Database and its applications: 30 years after the first variability plot”. Nucleic Acids Res 28 (1): 214-218. (January 2000). doi:10.1093/nar/28.1.214. PMC 102431. PMID 10592229. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102431/. 
  16. ^ Xiong, Jin (2006). Essential Bioinformatics. Cambridge, United Kingdom: Cambridge University Press. pp. 4. ISBN 978-0-511-16815-4 
  17. ^ “GenBank”. Nucleic Acids Res. 36 (Database issue): D25-30. (January 2008). doi:10.1093/nar/gkm929. PMC 2238942. PMID 18073190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238942/. 
  18. ^ a b c “Whole-genome random sequencing and assembly of Haemophilus influenzae Rd”. Science 269 (5223): 496-512. (July 1995). Bibcode1995Sci...269..496F. doi:10.1126/science.7542800. PMID 7542800. 
  19. ^ Carvajal-Rodriguez A (2012). “Simulation of Genes and Genomes Forward in Time”. Current Genomics 11 (1): 58-61. doi:10.2174/138920210790218007. PMC 2851118. PMID 20808525. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851118/. 
  20. ^ Brown, TA (2002). “Mutation, Repair and Recombination”. Genomes (2nd ed.). Manchester (UK): Oxford 
  21. ^ Carter, N. P.; Fiegler, H.; Piper, J. (2002). “Comparative analysis of comparative genomic hybridization microarray technologies: Report of a workshop sponsored by the Wellcome trust”. Cytometry Part A 49 (2): 43-48. doi:10.1002/cyto.10153. PMID 12357458. 
  22. ^ Hiraoka, Satoshi; Yang, Ching-chia; Iwasaki, Wataru (2016). “Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond” (英語). Microbes and environments 31 (3): 204-212. doi:10.1264/jsme2.ME16024. ISSN 1342-6311. PMC 5017796. PMID 27383682. https://doi.org/10.1264/jsme2.ME16024. 
  23. ^ Chaudhari Narendrakumar M., Kumar Gupta Vinod, Dutta Chitra (2016). “BPGA-an ultra-fast pan-genome analysis pipeline”. Scientific Reports 6: 24373. Bibcode2016NatSR...624373C. doi:10.1038/srep24373. PMC 4829868. PMID 27071527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829868/. 
  24. ^ Aston KI (2014). “Genetic susceptibility to male infertility: News from genome-wide association studies”. Andrology 2 (3): 315-21. doi:10.1111/j.2047-2927.2014.00188.x. PMID 24574159. 
  25. ^ “Genome-wide association studies and the clinic: A focus on breast cancer”. Biomarkers in Medicine 8 (2): 287-96. (2014). doi:10.2217/bmm.13.121. PMID 24521025. 
  26. ^ “Genome-wide association studies in Alzheimer's disease: A review”. Current Neurology and Neuroscience Reports 13 (10): 381. (2013). doi:10.1007/s11910-013-0381-0. PMC 3809844. PMID 23954969. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809844/. 
  27. ^ Use of Linkage Analysis, Genome-Wide Association Studies, and Next-Generation Sequencing in the Identification of Disease-Causing Mutations. Methods in Molecular Biology. 1015. (2013). 127-46. doi:10.1007/978-1-62703-435-7_8. ISBN 978-1-62703-434-0. PMID 23824853 
  28. ^ Hindorff, L.A. (2009). “Potential etiologic and functional implications of genome-wide association loci for human diseases and traits”. Proc. Natl. Acad. Sci. USA 106 (23): 9362-9367. Bibcode2009PNAS..106.9362H. doi:10.1073/pnas.0903103106. PMC 2687147. PMID 19474294. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687147/. 
  29. ^ Hall, L.O. (2010). Finding the right genes for disease and prognosis prediction. 1-2. doi:10.1109/ICSSE.2010.5551766. ISBN 978-1-4244-6472-2 
  30. ^ Vazquez, Miguel; Torre, Victor de la; Valencia, Alfonso (2012-12-27). “Chapter 14: Cancer Genome Analysis” (英語). PLOS Computational Biology 8 (12): e1002824. Bibcode2012PLSCB...8E2824V. doi:10.1371/journal.pcbi.1002824. ISSN 1553-7358. PMC 3531315. PMID 23300415. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531315/. 
  31. ^ Hye-Jung, E.C.; Jaswinder, K.; Martin, K.; Samuel, A.A; Marco, A.M (2014). “Second-Generation Sequencing for Cancer Genome Analysis”. In Dellaire, Graham; Berman, Jason N.; Arceci, Robert J.. Cancer Genomics. Boston (US): Academic Press. pp. 13-30. doi:10.1016/B978-0-12-396967-5.00002-5. ISBN 9780123969675 
  32. ^ Grau, J.; Ben-Gal, I.; Posch, S.; Grosse, I. (1 July 2006). “VOMBAT: prediction of transcription factor binding sites using variable order Bayesian trees”. Nucleic Acids Research 34 (Web Server): W529-W533. doi:10.1093/nar/gkl212. PMC 1538886. PMID 16845064. http://www.eng.tau.ac.il/~bengal/VOMBAT.pdf. 
  33. ^ The Human Protein Atlas”. www.proteinatlas.org. 2017年10月2日閲覧。
  34. ^ The human cell”. www.proteinatlas.org. 2017年10月2日閲覧。
  35. ^ Thul, Peter J.; Åkesson, Lovisa; Wiking, Mikaela; Mahdessian, Diana; Geladaki, Aikaterini; Blal, Hammou Ait; Alm, Tove; Asplund, Anna et al. (2017-05-26). “A subcellular map of the human proteome”. Science 356 (6340): eaal3321. doi:10.1126/science.aal3321. PMID 28495876. 
  36. ^ Ay, Ferhat; Noble, William S. (2 September 2015). “Analysis methods for studying the 3D architecture of the genome”. Genome Biology 16 (1): 183. doi:10.1186/s13059-015-0745-7. PMC 4556012. PMID 26328929. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556012/. 
  37. ^ Hoy, JA; Robinson, H; Trent JT, 3rd; Kakar, S; Smagghe, BJ; Hargrove, MS (3 August 2007). “Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport”. Journal of Molecular Biology 371 (1): 168-79. doi:10.1016/j.jmb.2007.05.029. PMID 17560601. 
  38. ^ a b Open Bioinformatics Foundation: About us”. Official website. Open Bioinformatics Foundation. 2011年5月10日閲覧。
  39. ^ Open Bioinformatics Foundation: BOSC”. Official website. Open Bioinformatics Foundation. 2011年5月10日閲覧。
  40. ^ Brohée, Sylvain; Barriot, Roland; Moreau, Yves (2010). “Biological knowledge bases using Wikis: combining the flexibility of Wikis with the structure of databases”. Bioinformatics 26 (17): 2210-2211. doi:10.1093/bioinformatics/btq348. PMID 20591906. http://bioinformatics.oxfordjournals.org/content/26/17/2210.full 2015年5月5日閲覧。. 
  41. ^ Nisbet, Robert (2009). “Bioinformatics”. Handbook of Statistical Analysis and Data Mining Applications. John Elder IV, Gary Miner. Academic Press. p. 328. ISBN 978-0080912035. https://books.google.com/?id=U5np34a5fmQC&pg=PA328&q=bioinformatics%20service%20categories%20EBI 2014年5月9日閲覧。 
  42. ^ Commissioner. “Advancing Regulatory Science - Sept. 24-25, 2014 Public Workshop: Next Generation Sequencing Standards” (英語). www.fda.gov. 2017年11月30日閲覧。
  43. ^ Simonyan, Vahan; Goecks, Jeremy; Mazumder, Raja (2017). “Biocompute Objects ? A Step towards Evaluation and Validation of Biomedical Scientific Computations”. PDA Journal of Pharmaceutical Science and Technology 71 (2): 136-46. doi:10.5731/pdajpst.2016.006734. ISSN 1079-7440. PMC 5510742. PMID 27974626. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510742/. 
  44. ^ Alterovitz, Gil; Dean, Dennis; Goble, Carole; Crusoe, Michael R.; Soiland-Reyes, Stian; Bell, Amanda; Hayes, Anais; Suresh, Anita et al. (2017-09-21) (英語). Enabling Precision Medicine via standard communication of HTS provenance, analysis, and results. doi:10.1101/191783. http://biorxiv.org/lookup/doi/10.1101/191783. 
  45. ^ BioCompute Object (BCO) project is a collaborative and community-driven framework to standardize HTS computational data. 1. BCO Specification Document: user manual for understanding and creating B., biocompute-objects, (2017-09-03), https://github.com/biocompute-objects/HTS-CSRS 2017年11月30日閲覧。 
  46. ^ Barker, D; Ferrier, D.E.K.; Holland, P.W; Mitchell, J.B.O; Plaisier, H; Ritchie, M.G; Smart, S.D. (2013). “4273π : bioinformatics education on low cost ARM hardware”. BMC Bioinformatics 14: 243. doi:10.1186/1471-2105-14-243. PMC 3751261. PMID 23937194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751261/. 
  47. ^ Barker, D; Alderson, R.G; McDonagh, J.L; Plaisier, H; Comrie, M.M; Duncan, L; Muirhead, G.T.P; Sweeny, S.D. (2015). “University-level practical activities in bioinformatics benefit voluntary groups of pupils in the last 2 years of school”. International Journal of STEM Education 2 (17). doi:10.1186/s40594-015-0030-z. 
  48. ^ McDonagh, J.L; Barker, D; Alderson, R.G. (2016). “Bringing computational science to the public”. SpringerPlus 5 (259): 259. doi:10.1186/s40064-016-1856-7. PMC 4775721. PMID 27006868. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775721/. 
  49. ^ Robson, J.F.; Barker, D (2015). “Comparison of the protein-coding gene content of Chlamydia trachomatis and Protochlamydia amoebophila using a Raspberry Pi computer”. BMC Research Notes 8 (561): 561. doi:10.1186/s13104-015-1476-2. PMC 4604092. PMID 26462790. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604092/. 
  50. ^ Wregglesworth, K.M; Barker, D (2015). “A comparison of the protein-coding genomes of two green sulphur bacteria, Chlorobium tepidum TLS and Pelodictyon phaeoclathratiforme BU-1”. BMC Research Notes 8 (565): 565. doi:10.1186/s13104-015-1535-8. PMC 4606965. PMID 26467441. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606965/. 






固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「バイオインフォマティクス」の関連用語

バイオインフォマティクスのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



バイオインフォマティクスのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのバイオインフォマティクス (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS