ケイ素 歴史

ケイ素

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/10 06:07 UTC 版)

歴史

1787年に、アントワーヌ・ラヴォワジエが初めて元素として記載した。しかしラヴォワジエは、燧石そのものを元素だと思っていた。

1800年に、ハンフリー・デービーの研究によって燧石は化合物だったことが判明した。

1811年に、ジョセフ・ルイ・ゲイ=リュサックルイ・テナールが、のちのベルセリウスと同様の方法でアモルファスシリコンの分離に成功したと考えられている。

1823年に、イェンス・ベルセリウス四フッ化ケイ素カリウムを加熱して単離に成功した。

用途

バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素リンなどの不純物を微量添加させることにより、p型半導体n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 %(15N[注 5])まで純度を高められる。また、Si(111) 基板はAFMSTMの標準試料としてよく用いられる。

ケイ素の単結晶

赤外光学系

ケイ素は赤外域(波長2–6 μm)で高い透過率があり、レンズや窓の素材に用いられる。波長4 μmの屈折率は3.4255[8]

半導体素子

四塩化ケイ素トリクロロシランから作られる高純度ケイ素の塊(シリコンウェハー)は、半導体素子に用いられる。また、液晶ディスプレイTFTソーラーパネルには、アモルファスシリコンや多結晶シリコンなどが用いられる。ヒ化ガリウム窒化ガリウムなどの化合物半導体の基板にシリコンを用いれば、大幅な低価格化が可能であり、さまざまな研究や実用化が進められている。

ケイ素含有合金

電気炉における製鉄材料として1トンあたり4 kg前後のケイ素が添加されるほか、ケイ素合金として製鉄脱酸素剤に用いられる。そのほかに、ケイ素を混ぜた鋼板(ケイ素鋼板)は、うず電流による損失が少なくなるため、変圧器に使われている。アルミニウム工業の分野でもケイ素の合金が使われている。また、鉛レス黄銅にも添加される。

ケイ素含有セラミックス類

ケイ素の酸化物(シリカ)を原料とするガラスは、などで使われるほか、繊維状にしたグラスウール断熱材や吸音材としても用途がある。ゼオライトは、イオン交換体、吸着剤あるいは、有機化学工業における触媒ともなっている。シリカゲルは、非常に利用しやすい乾燥剤になる。

炭化ケイ素は、耐火材や抵抗体として使われたり、高いモース硬度(9.5)を持つために研磨剤として使われたりする。そのほかのケイ素化合物として、アルミノケイ酸塩粘土に含まれ、陶器セメント煉瓦などセラミックスと呼ばれる材料の主成分になっているほか、カルシウム化合物を除去する働きから、の精製に使われるなどしている。

アボガドロ定数の決定

ケイ素の単結晶は半導体材料として工業上重要であるため、もっとも高純度・低欠陥な結晶が実現されている材料のひとつである。このことから、28Siのほぼ無欠陥な単結晶により真球を作成し、この真球からアボガドロ定数の正確な値と、1 キログラムを構成するのに必要な原子の個数を決定する試みが行われた[9]。2019年5月20日よりアボガドロ定数は6.02214076×1023 mol−1という定義値として施行されることになった。

機械式時計の部品

ケイ素はと違って軽いうえ磁性を帯びず、ダイヤモンドに次ぐ硬度を持つため、機械式時計の部品(ゼンマイ、ガンギ車など)の素材としても用いられるようになっている。最初に実用化に成功したのはスイスユリス・ナルダンの『フリーク』(2001年)[10]で、以降スイスの高級時計メーカーで採用が進められている。日本では、2021年セイコーエプソンがプリンターヘッドの製造技術を応用し、「オリエントスター」ブランドで初めて発売に踏み切った[11]

ただし、製造にはLIGAMEMSなど高度な成型技術が必要なうえ、壊れやすいため歩止まりが低いなど、実用化されてから日が浅いため欠点や不明な点が多く、採用しないメーカーも多い。

ケイ酸塩・ケイ素樹脂

前述のように、ケイ酸塩はさまざまな形で地殻上に存在しており、天然に存在するケイ素化合物のほとんどが、二酸化ケイ素およびケイ酸塩である。工業的にも広く用いられ、ガラス、陶磁器、肥料など、枚挙に暇がない。

アスベストは、繊維状のケイ酸塩鉱物であり、耐薬品性や耐火性から以前は建材などに広く用いられたが、中皮腫が問題になったため、使用量は激減している。日本でもアスベストによる健康被害が社会問題となり、労災認定や健康被害を受けた人に対しての補償問題、また、依然として既存建築物に多く残るアスベストの撤去問題を抱える。

有機基を有するケイ素二次元および三次元酸化物は、シリコーンと呼ばれる。このものは、優れた耐熱性、耐薬品性、低い毒性などの有用な性質を示し、油状のものはワックス熱媒体消泡剤などに用いられる。三次元シリコーンはゴム弾性を示し、ゴム状のものはホースやチューブ、樹脂状のものは塗料絶縁材、接着剤など各種の用途に利用される。


注釈

  1. ^ 古代中国語の硅の発音はhuòであることなどから、成 (2012, p. 156) は古代中国語からの転用である説を退けている。
  2. ^ 当初はと呼ばれていたとされ、経緯には諸説ある[5]
  3. ^ 中国において「」が定着したのは、1959年以降であり、それ以前は両漢字名が競い合っていた[6]
  4. ^ 酸素のイオン半径はケイ素の3倍以上であるため、体積においてはケイ素の0.86 %に対して酸素が93.77 %を占める[7]
  5. ^ 「9」(Nine)が15個並ぶことを意味する略称。
  6. ^ インドは男性のビール摂取量が多く、ビールにはケイ素が多く含まれるため数値が高いと考えられている。シリカ#ろ過助剤を参照のこと。

出典

  1. ^ T. Michael Duncan, Jeffrey Allen Reimer, Chemical engineering design and analysis: an introduction, p. 25, Cambridge University Press, 1998 ISBN 0521639565
  2. ^ R. S. Ram et al. “Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD” J. Mol. Spectr. 190, 341–352 (1998)
  3. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  4. ^ a b c d http://www.ioffe.ru/SVA/NSM/Semicond/Si
  5. ^ a b 成 2012, pp. 155–156.
  6. ^ 成 2012, p. 156.
  7. ^ a b c 酒井 2003, pp. 48–49.
  8. ^ 岸川利郎 (1990). ユーザーエンジニアのための光学入門. オプトロニクス. ISBN 4-900474-30-4 
  9. ^ B. Andreas et al. (2011). “Determination of the Avogadro Constant by Counting the Atoms in a 28Si Crystal”. Physical Review Letters (American Physical Society) 106: 030801. doi:10.1103/PhysRevLett.106.030801. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.030801. 
  10. ^ ユリス・ナルダン フリーク Part.2、WebChronos、2020年2月11日
  11. ^ オリエントスター来し方70年 煌めきのクライマックス、WebChronos、2021年2月5日
  12. ^ SAND AND GRAVEL(INDUSTRIAL), アメリカ地質調査所
  13. ^ Wacker Polysilicon: Expansion Announcement June 2006(Wacker 社による生産量拡大のアナウンス資料)
  14. ^ 河本洋、奥和田久美、高純度シリコン原料技術の開発動向科学技術政策研究所)2016年3月5日時点のアーカイブ。
  15. ^ New Energy Finance Predicts 43% Solar Silicon Price Drop, greentechmedia, 18 August 2008
  16. ^ mad science. オライリー・ジャパン. (5/21). pp. 183,184,185 
  17. ^ 植田和利, 伊東和彦, 上原誠一郎, 佐藤博樹「太陽炉を利用したマグネシウムによる二酸化ケイ素の還元とその教材化」『科学教育研究』第40巻第1号、日本科学教育学会、2016年、 39-45頁、 doi:10.14935/jssej.40.39ISSN 0386-4553NAID 130005144680
  18. ^ a b c d e “SILICON AND BONE HEALTH”. The journal of nutrition, health & aging 11 (2). (2007). PMID 17435952. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658806/. 
  19. ^ John Emsley (2011). Nature’s Building blocks (New Edition ed.). Oxford University Press. p. 482. ISBN 978-0-19-960563-7 
  20. ^ “A provisional database for the silicon content of foods in the United Kingdom”. British Journal of Nutrition 94. (2005). doi:10.1079/BJN20051542. PMID 16277785. 
  21. ^ ケイ素、ケイ素化合物 - 「健康食品」の安全性・有効性情報(国立健康・栄養研究所
  22. ^ “Renal silica calculi in an infant”. International Journal of Urology 11 (2). (Feb 2004). doi:10.1111/j.1442-2042.2004.00746.x. PMID 14706018. 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ケイ素」の関連用語

ケイ素のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ケイ素のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのケイ素 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2022 GRAS Group, Inc.RSS