混合モデル
![]() | この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
混合モデル(こんごうモデル、英: mixed model)とは、固定効果(fixed effect)と変量効果(random effect)を共に含む(ゆえに混合効果と呼ばれる)統計学的モデルであり、医学・生物学・社会科学等の広い領域に用いられる。特に縦断研究においてある項目を繰り返し観察する反復測定デザイン等で有用である。欠測データの取り扱いに優れ、混合効果モデルは多くの場合、反復測定分散分析等の伝統的なアプローチよりも望ましい。
歴史と現状
1918年、ロナルド・フィッシャーが関連する項目間の特性を変量効果モデルとして導き出した事に由来する[1]。1950年代、チャールズ・ヘンダーソンが固定効果モデルである最良線形不偏推定量(BLUE)および変量効果モデルである最良線形不偏予測量(BLUP)を規定した[2][3][4][5]。
その後、混合モデルは最尤推定量、非線形混合効果モデル、欠測のあるモデル、混合効果モデルのベイズ推定量の計算等に用いられるようになった。混合モデルは各測定点での値が相互に影響し合うケースに用いられ、現在ではヒトに対する臨床試験や動物実験で汎用されているほか、工業統計においても使用されている[要出典]。
定義
行列を用いて以下の様に記述する。
- 混合モデルのページへのリンク