接続形式
![]() | 原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
接続形式(せつぞくけいしき、connection form)は、数学、特に微分幾何学における概念の1つで、微分形式や動標構(moving frame)のことばを使うことにより、接続のデータを構成する方法である。
概要
歴史的には、接続形式はエリ・カルタン(Élie Cartan)により20世紀の前半に導入された。これは彼の動標構の方法の一部であり、彼の主要な動機であった。接続形式は標構(frame)(座標系)の選択に依存するので、テンソル的な対象ではない。接続形式の様々な一般化や再解釈がカルタンの一連の初期の仕事で定式化された。特に、主バンドル上の接続は、テンソル的な対象として接続形式の自然な再解釈を持っている。他方、接続形式は抽象的な主バンドル上というよりは、むしろ微分可能多様体(differentiable manifold)上に定義された微分形式であるという利点を持っている。従って、テンソル性がないにもかかわらず、それらの計算の実行が比較的容易なため、接続形式は使われ続けている。Griffiths & Harris (1978) Wells (1980) Spivak (1999) また、物理学でも、接続形式はゲージ共変性(gauge covariant derivative)を通して、ゲージ理論の脈絡で広く使われている。
接続形式は、微分形式の行列のなすベクトルバンドルの各々の基底に結びついている。接続形式は、基底変換でレヴィ・チヴィタ接続のクリストッフェル記号と同一な方法で、変換写像(transition functions)の外微分である変換をする。接続形式の主なテンソル的な不変量は、接続形式の曲率形式である。接バンドルとベクトルバンドルを同一視する標準 1-形式(solder form)[1]があるときは、別の不変量があり、捩率形式と言われる。多くの場合、接続形式は、ベクトルバンドルに構造群がリー群であるファイバーバンドルの構造を付加したものと考えられる。
ベクトルバンドル
準備
ベクトルバンドル上の標構
E を微分可能多様体 M 上の次元 k のファイバーバンドルとする。E の局所標構(local frame)とは、E の局所切断の順序付けられた基底を言う。
e=(eα)α=1,2,...,k を E の局所標構とする。この標構は E の局所的な任意の切断を表現することに使われる。ξ を標構 e と同じ開集合の上に定義された局所切断をすると、
「Connection form」の例文・使い方・用例・文例
- Connection formのページへのリンク