重み付け版
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/13 23:39 UTC 版)
「ホルム=ボンフェローニ法」の記事における「重み付け版」の解説
P ( 1 ) , … , P ( m ) {\displaystyle P_{(1)},\ldots ,P_{(m)}} を並び換えされた未調整p値とする。 H ( i ) {\displaystyle H_{(i)}} について、 0 ≤ w ( i ) {\displaystyle 0\leq w_{(i)}} を P ( i ) {\displaystyle P_{(i)}} に対応させる。 P ( j ) ≤ w ( j ) ∑ k = j m w ( k ) α , j = 1 , … , i {\displaystyle P_{(j)}\leq {\frac {w_{(j)}}{\sum _{k=j}^{m}w_{(k)}}}\alpha ,\quad j=1,\ldots ,i} であるならば、 H ( i ) {\displaystyle H_{(i)}} を棄却する。
※この「重み付け版」の解説は、「ホルム=ボンフェローニ法」の解説の一部です。
「重み付け版」を含む「ホルム=ボンフェローニ法」の記事については、「ホルム=ボンフェローニ法」の概要を参照ください。
- 重み付け版のページへのリンク