直交曲線座標の表
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/02 01:23 UTC 版)
通常の直交曲線座標の他に、いくつかのやや珍しい直交曲線座標を以下に表に示す。 Interval notation is used for compactness in the coordinates column. Curvillinear coordinates (q1, q2, q3)Transformation from cartesian (x, y, z)Scale factorsSpherical polar coordinates ( r , θ , ϕ ) ∈ [ 0 , ∞ ) × [ 0 , π ] × [ 0 , 2 π ) {\displaystyle (r,\theta ,\phi )\in [0,\infty )\times [0,\pi ]\times [0,2\pi )} x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ {\displaystyle {\begin{aligned}x&=r\sin \theta \cos \phi \\y&=r\sin \theta \sin \phi \\z&=r\cos \theta \end{aligned}}} h 1 = 1 h 2 = r h 3 = r sin θ {\displaystyle {\begin{aligned}h_{1}&=1\\h_{2}&=r\\h_{3}&=r\sin \theta \end{aligned}}} Cylindrical polar coordinates ( r , ϕ , z ) ∈ [ 0 , ∞ ) × [ 0 , 2 π ) × ( − ∞ , ∞ ) {\displaystyle (r,\phi ,z)\in [0,\infty )\times [0,2\pi )\times (-\infty ,\infty )} x = r cos ϕ y = r sin ϕ z = z {\displaystyle {\begin{aligned}x&=r\cos \phi \\y&=r\sin \phi \\z&=z\end{aligned}}} h 1 = h 3 = 1 h 2 = r {\displaystyle {\begin{aligned}h_{1}&=h_{3}=1\\h_{2}&=r\end{aligned}}} Parabolic cylindrical coordinates ( u , v , z ) ∈ ( − ∞ , ∞ ) × [ 0 , ∞ ) × ( − ∞ , ∞ ) {\displaystyle (u,v,z)\in (-\infty ,\infty )\times [0,\infty )\times (-\infty ,\infty )} x = 1 2 ( u 2 − v 2 ) y = u v z = z {\displaystyle {\begin{aligned}x&={\frac {1}{2}}(u^{2}-v^{2})\\y&=uv\\z&=z\end{aligned}}} h 1 = h 2 = u 2 + v 2 h 3 = 1 {\displaystyle {\begin{aligned}h_{1}&=h_{2}={\sqrt {u^{2}+v^{2}}}\\h_{3}&=1\end{aligned}}} Parabolic coordinates ( u , v , ϕ ) ∈ [ 0 , ∞ ) × [ 0 , ∞ ) × [ 0 , 2 π ) {\displaystyle (u,v,\phi )\in [0,\infty )\times [0,\infty )\times [0,2\pi )} x = u v cos ϕ y = u v sin ϕ z = 1 2 ( u 2 − v 2 ) {\displaystyle {\begin{aligned}x&=uv\cos \phi \\y&=uv\sin \phi \\z&={\frac {1}{2}}(u^{2}-v^{2})\end{aligned}}} h 1 = h 2 = u 2 + v 2 h 3 = u v {\displaystyle {\begin{aligned}h_{1}&=h_{2}={\sqrt {u^{2}+v^{2}}}\\h_{3}&=uv\end{aligned}}} Paraboloidal coordinates ( λ , μ , ν ) ∈ [ 0 , b 2 ) × ( b 2 , a 2 ) × ( a 2 , ∞ ) b 2 < a 2 {\displaystyle {\begin{aligned}&(\lambda ,\mu ,\nu )\in [0,b^{2})\times (b^{2},a^{2})\times (a^{2},\infty )\\&b^{2}
※この「直交曲線座標の表」の解説は、「直交曲線座標」の解説の一部です。
「直交曲線座標の表」を含む「直交曲線座標」の記事については、「直交曲線座標」の概要を参照ください。
- 直交曲線座標の表のページへのリンク