治療標的データベースとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 治療標的データベースの意味・解説 

治療標的データベース

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/06/01 16:56 UTC 版)

治療標的データベース: Therapeutic Target DatabaseTTD)は、中国浙江大学Innovative Drug Research and Bioinformatics Group (IDRB)とシンガポール国立大学のBioinformatics and Drug Design Groupによって構築された医薬品および医療関連のリポジトリである[1]。これは、既知および探索された治療上のタンパク質核酸の標的[2]、標的疾患[3]、経路情報[4]、およびこれらの標的に対応する薬物に関する情報を提供する[5]。標的機能、配列、立体構造、リガンド結合特性、酵素の命名法と薬物構造、治療クラス、および臨床開発状況などの詳細な知識が得られる[6]。TTDは、http://db.idrblab.net/ttd/ からログイン不要で自由にアクセスできる。


  1. ^ a b c d Wang, Yunxia; Zhang, Song; Li, Fengcheng; Zhou, Ying; Zhang, Ying; Wang, Zhengwen; Zhang, Runyuan; Zhu, Jiang et al. (2019-11-06). “Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics”. Nucleic Acids Research 48 (D1): D1031–D1041. doi:10.1093/nar/gkz981. ISSN 1362-4962. PMC: 7145558. PMID 31691823. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145558/. 
  2. ^ “The druggable genome.”. Nature Reviews Drug Discovery 1 (9): 727–30. (2002). doi:10.1038/nrd892. PMID 12209152. 
  3. ^ “How many drug targets are there?”. Nature Reviews Drug Discovery 5 (12): 993–6. (2006). doi:10.1038/nrd2199. PMID 17139284. 
  4. ^ “Therapeutic targets: progress of their exploration and investigation of their characteristics.”. Pharmacol. Rev. 58 (2): 259–79. (2006). doi:10.1124/pr.58.2.4. PMID 16714488. https://semanticscholar.org/paper/c20cfd5873c26650a050765d81811feae43e6099. 
  5. ^ Li, Ying Hong; Yu, Chun Yan; Li, Xiao Xu; Zhang, Peng; Tang, Jing; Yang, Qingxia; Fu, Tingting; Zhang, Xiaoyu et al. (2018-01-04). “Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics”. Nucleic Acids Research 46 (D1): D1121–D1127. doi:10.1093/nar/gkx1076. ISSN 1362-4962. PMC: 5753365. PMID 29140520. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753365/. 
  6. ^ “Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics.”. Nucleic Acids Res. 46 (D1): D1121–D1127. (2018). doi:10.1093/nar/gkx1076. PMC: 5753365. PMID 29140520. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753365/. 
  7. ^ The Lancet, null (2019-06-08). “ICD-11”. Lancet 393 (10188): 2275. doi:10.1016/S0140-6736(19)31205-X. ISSN 1474-547X. PMID 31180012. 
  8. ^ a b Lindsay, Mark A. (2003-10-01). “Target discovery”. Nature Reviews. Drug Discovery 2 (10): 831–838. doi:10.1038/nrd1202. ISSN 1474-1776. PMID 14526386. 
  9. ^ a b Vidalin, Olivier; Muslmani, Machadiya; Estienne, Clément; Echchakir, Hamid; Abina, Amine M. (2009-10-01). “In vivo target validation using gene invalidation, RNA interference and protein functional knockout models: it is the time to combine”. Current Opinion in Pharmacology 9 (5): 669–676. doi:10.1016/j.coph.2009.06.017. ISSN 1471-4973. PMID 19646923. 
  10. ^ a b Overall, Christopher M.; Kleifeld, Oded (2006-03-15). “Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy”. Nature Reviews. Cancer 6 (3): 227–239. doi:10.1038/nrc1821. ISSN 1474-175X. PMID 16498445. 
  11. ^ Zhu, Feng; Shi, Zhe; Qin, Chu; Tao, Lin; Liu, Xin; Xu, Feng; Zhang, Li; Song, Yang et al. (2012-01-01). “Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery”. Nucleic Acids Research 40 (Database issue): D1128–1136. doi:10.1093/nar/gkr797. ISSN 1362-4962. PMC: 3245130. PMID 21948793. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245130/. 
  12. ^ Munos, Bernard (2009-12-01). “Lessons from 60 years of pharmaceutical innovation”. Nature Reviews. Drug Discovery 8 (12): 959–968. doi:10.1038/nrd2961. ISSN 1474-1784. PMID 19949401. 
  13. ^ Yang, Qingxia; Li, Bo; Tang, Jing; Cui, Xuejiao; Wang, Yunxia; Li, Xiaofeng; Hu, Jie; Chen, Yuzong et al. (2019-06-03). “Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data”. Briefings in Bioinformatics 21 (3): 1058–1068. doi:10.1093/bib/bbz049. ISSN 1477-4054. PMID 31157371. 
  14. ^ Tang, Jing; Fu, Jianbo; Wang, Yunxia; Luo, Yongchao; Yang, Qingxia; Li, Bo; Tu, Gao; Hong, Jiajun et al. (2019-08-01). “Simultaneous Improvement in the Precision, Accuracy, and Robustness of Label-free Proteome Quantification by Optimizing Data Manipulation Chains”. Molecular & Cellular Proteomics 18 (8): 1683–1699. doi:10.1074/mcp.RA118.001169. ISSN 1535-9484. PMC: 6682996. PMID 31097671. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682996/. 
  15. ^ Wang, Panpan; Fu, Tingting; Zhang, Xiaoyu; Yang, Fengyuan; Zheng, Guoxun; Xue, Weiwei; Chen, Yuzong; Yao, Xiaojun et al. (2017-11-01). “Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD”. Biochimica et Biophysica Acta (BBA) - General Subjects 1861 (11 Pt A): 2766–2777. doi:10.1016/j.bbagen.2017.07.022. ISSN 0304-4165. PMID 28757337. 
  16. ^ Li, Ying Hong; Yu, Chun Yan; Li, Xiao Xu; Zhang, Peng; Tang, Jing; Yang, Qingxia; Fu, Tingting; Zhang, Xiaoyu et al. (2018-01-04). “Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics”. Nucleic Acids Research 46 (D1): D1121–D1127. doi:10.1093/nar/gkx1076. ISSN 1362-4962. PMC: 5753365. PMID 29140520. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753365/. 
  17. ^ Hughes, Diarmaid; Andersson, Dan I. (2015-08-01). “Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms”. Nature Reviews. Genetics 16 (8): 459–471. doi:10.1038/nrg3922. ISSN 1471-0064. PMID 26149714. 
  18. ^ Iskar, Murat; Campillos, Monica; Kuhn, Michael; Jensen, Lars Juhl; van Noort, Vera; Bork, Peer (2010-09-09). “Drug-induced regulation of target expression”. PLOS Computational Biology 6 (9): e1000925. Bibcode2010PLSCB...6E0925I. doi:10.1371/journal.pcbi.1000925. ISSN 1553-7358. PMC: 2936514. PMID 20838579. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936514/. 
  19. ^ Fardid, Reza; Najafi, Masoud; Salajegheh, Ashkan; Kazemi, Elahe; Rezaeyan, Abolhasan (2017-01-01). “Radiation-induced non-targeted effect in vivo: Evaluation of cyclooygenase-2 and endothelin-1 gene expression in rat heart tissues”. Journal of Cancer Research and Therapeutics 13 (1): 51–55. doi:10.4103/0973-1482.203601. ISSN 1998-4138. PMID 28508833. 
  20. ^ a b Jia, Jia; Zhu, Feng; Ma, Xiaohua; Cao, Zhiwei; Cao, Zhiwei W.; Li, Yixue; Li, Yixue X.; Chen, Yu Zong (2009-02-01). “Mechanisms of drug combinations: interaction and network perspectives”. Nature Reviews. Drug Discovery 8 (2): 111–128. doi:10.1038/nrd2683. ISSN 1474-1784. PMID 19180105. 
  21. ^ Tao, Lin; Zhu, Feng; Xu, Feng; Chen, Zhe; Jiang, Yu Yang; Chen, Yu Zong (2015-12-01). “Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs”. Pharmacological Research 102: 123–131. doi:10.1016/j.phrs.2015.09.019. ISSN 1096-1186. PMID 26438971. 
  22. ^ Ohlstein, E. H.; Ruffolo, R. R.; Elliott, J. D. (2000). “Drug discovery in the next millennium”. Annual Review of Pharmacology and Toxicology 40: 177–191. doi:10.1146/annurev.pharmtox.40.1.177. ISSN 0362-1642. PMID 10836132. 
  23. ^ Edwards, Aled (2009). “Large-scale structural biology of the human proteome”. Annual Review of Biochemistry 78: 541–568. doi:10.1146/annurev.biochem.78.070907.103305. ISSN 1545-4509. PMID 19489729. 
  24. ^ Rask-Andersen, Mathias; Masuram, Surendar; Schiöth, Helgi B. (2014). “The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication”. Annual Review of Pharmacology and Toxicology 54: 9–26. doi:10.1146/annurev-pharmtox-011613-135943. ISSN 1545-4304. PMID 24016212. 
  25. ^ Arnold, D.; Lueza, B.; Douillard, J.-Y.; Peeters, M.; Lenz, H.-J.; Venook, A.; Heinemann, V.; Van Cutsem, E. et al. (2017-08-01). “Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials”. Annals of Oncology 28 (8): 1713–1729. doi:10.1093/annonc/mdx175. ISSN 1569-8041. PMC: 6246616. PMID 28407110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6246616/. 
  26. ^ Shaabani, Shabnam; Huizinga, Harmen P. S.; Butera, Roberto; Kouchi, Ariana; Guzik, Katarzyna; Magiera-Mularz, Katarzyna; Holak, Tad A.; Dömling, Alexander (2018-09-01). “A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018)”. Expert Opinion on Therapeutic Patents 28 (9): 665–678. doi:10.1080/13543776.2018.1512706. ISSN 1744-7674. PMC: 6323140. PMID 30107136. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323140/. 
  27. ^ Grandjean, Nicolas; Charpiot, Brigitte; Pena, Carlos Andres; Peitsch, Manuel C. (2005). “Competitive intelligence and patent analysis in drug discovery”. Drug Discovery Today: Technologies 2 (3): 211–215. doi:10.1016/j.ddtec.2005.08.007. ISSN 1740-6749. PMID 24981938. 
  28. ^ Santos, Rita; Ursu, Oleg; Gaulton, Anna; Bento, A. Patrícia; Donadi, Ramesh S.; Bologa, Cristian G.; Karlsson, Anneli; Al-Lazikani, Bissan et al. (2017-01-01). “A comprehensive map of molecular drug targets”. Nature Reviews. Drug Discovery 16 (1): 19–34. doi:10.1038/nrd.2016.230. ISSN 1474-1784. PMC: 6314433. PMID 27910877. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314433/. 
  29. ^ Finan, Chris; Gaulton, Anna; Kruger, Felix A.; Lumbers, R. Thomas; Shah, Tina; Engmann, Jorgen; Galver, Luana; Kelley, Ryan et al. (2017-03-29). “The druggable genome and support for target identification and validation in drug development”. Science Translational Medicine 9 (383): eaag1166. doi:10.1126/scitranslmed.aag1166. ISSN 1946-6242. PMC: 6321762. PMID 28356508. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321762/. 
  30. ^ Zhao, Shan; Iyengar, Ravi (2012). “Systems pharmacology: network analysis to identify multiscale mechanisms of drug action”. Annual Review of Pharmacology and Toxicology 52: 505–521. doi:10.1146/annurev-pharmtox-010611-134520. ISSN 1545-4304. PMC: 3619403. PMID 22235860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619403/. 
  31. ^ a b Csermely, Péter; Agoston, Vilmos; Pongor, Sándor (2005-04-01). “The efficiency of multi-target drugs: the network approach might help drug design”. Trends in Pharmacological Sciences 26 (4): 178–182. arXiv:q-bio/0412045. doi:10.1016/j.tips.2005.02.007. ISSN 0165-6147. PMID 15808341. 
  32. ^ Yin, Jiayi; Sun, Wen; Li, Fengcheng; Hong, Jiajun; Li, Xiaoxu; Zhou, Ying; Lu, Yinjing; Liu, Mengzhi et al. (2019-09-09). “VARIDT 1.0: variability of drug transporter database”. Nucleic Acids Research 48 (D1): D1042–D1050. doi:10.1093/nar/gkz779. ISSN 1362-4962. PMC: 6943059. PMID 31495872. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943059/. 
  33. ^ Rukov, Jakob Lewin; Shomron, Noam (2011-08-01). “MicroRNA pharmacogenomics: post-transcriptional regulation of drug response”. Trends in Molecular Medicine 17 (8): 412–423. doi:10.1016/j.molmed.2011.04.003. ISSN 1471-499X. PMID 21652264. 
  34. ^ Heguy, A.; Stewart, A. A.; Haley, J. D.; Smith, D. E.; Foulkes, J. G. (1995). “Gene expression as a target for new drug discovery”. Gene Expression 4 (6): 337–344. ISSN 1052-2166. PMC: 6134365. PMID 7549465. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134365/. 
  35. ^ Hopkins, Andrew L. (2008-11-01). “Network pharmacology: the next paradigm in drug discovery”. Nature Chemical Biology 4 (11): 682–690. doi:10.1038/nchembio.118. ISSN 1552-4469. PMID 18936753. 
  36. ^ Kanehisa, Minoru; Furumichi, Miho; Tanabe, Mao; Sato, Yoko; Morishima, Kanae (2017-01-04). “KEGG: new perspectives on genomes, pathways, diseases and drugs”. Nucleic Acids Research 45 (D1): D353–D361. doi:10.1093/nar/gkw1092. ISSN 1362-4962. PMC: 5210567. PMID 27899662. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210567/. 
  37. ^ Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S. (2015-07-01). “Pathways with PathWhiz”. Nucleic Acids Research 43 (W1): W552–559. doi:10.1093/nar/gkv399. ISSN 1362-4962. PMC: 4489271. PMID 25934797. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489271/. 


「治療標的データベース」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  治療標的データベースのページへのリンク

辞書ショートカット

すべての辞書の索引

「治療標的データベース」の関連用語

治療標的データベースのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



治療標的データベースのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの治療標的データベース (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS