正割関数と余割関数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > 正割関数と余割関数の意味・解説 

正割関数と余割関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/01 05:45 UTC 版)

三角関数の公式の一覧」の記事における「正割関数と余割関数」の解説

ek前節同様正接関数基本対称式とする。 sec ⁡ ( θ 1 + ⋯ + θ n ) = sec ⁡ θ 1 ⋯ sec ⁡ θ n e 0 − e 2 + e 4 − ⋯ csc ⁡ ( θ 1 + ⋯ + θ n ) = sec ⁡ θ 1 ⋯ sec ⁡ θ n e 1 − e 3 + e 5 − ⋯ {\displaystyle {\begin{aligned}\sec(\theta _{1}+\cdots +\theta _{n})&={\frac {\sec \theta _{1}\cdots \sec \theta _{n}}{e_{0}-e_{2}+e_{4}-\cdots }}\\[8pt]\csc(\theta _{1}+\cdots +\theta _{n})&={\frac {\sec \theta _{1}\cdots \sec \theta _{n}}{e_{1}-e_{3}+e_{5}-\cdots }}\end{aligned}}} 例 sec ⁡ ( α + β + γ ) = sec ⁡ α sec ⁡ β sec ⁡ γ 1 − tan ⁡ α tan ⁡ β − tan ⁡ α tan ⁡ γ − tan ⁡ β tan ⁡ γ csc ⁡ ( α + β + γ ) = sec ⁡ α sec ⁡ β sec ⁡ γ tan ⁡ α + tan ⁡ β + tan ⁡ γ − tan ⁡ α tan ⁡ β tan ⁡ γ {\displaystyle {\begin{aligned}\sec(\alpha +\beta +\gamma )&={\frac {\sec \alpha \sec \beta \sec \gamma }{1-\tan \alpha \tan \beta -\tan \alpha \tan \gamma -\tan \beta \tan \gamma }}\\[8pt]\csc(\alpha +\beta +\gamma )&={\frac {\sec \alpha \sec \beta \sec \gamma }{\tan \alpha +\tan \beta +\tan \gamma -\tan \alpha \tan \beta \tan \gamma }}\end{aligned}}}

※この「正割関数と余割関数」の解説は、「三角関数の公式の一覧」の解説の一部です。
「正割関数と余割関数」を含む「三角関数の公式の一覧」の記事については、「三角関数の公式の一覧」の概要を参照ください。

ウィキペディア小見出し辞書の「正割関数と余割関数」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「正割関数と余割関数」の関連用語

正割関数と余割関数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



正割関数と余割関数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの三角関数の公式の一覧 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS