変分法による近似解
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/14 15:09 UTC 版)
「グロス=ピタエフスキー方程式」の記事における「変分法による近似解」の解説
厳密な解析解が適用できる系からかけ離れた状況にある系に対しても、変分法を用いた近似によって解を評価することができる。基本的なアイデアは、波動関数に対して変分に用いる何らかのパラメタを設定し、系の自由エネルギーを考えることである。基底状態の波動関数は自由エネルギーを最小化する変分パラメタを決定することによって得られる。
※この「変分法による近似解」の解説は、「グロス=ピタエフスキー方程式」の解説の一部です。
「変分法による近似解」を含む「グロス=ピタエフスキー方程式」の記事については、「グロス=ピタエフスキー方程式」の概要を参照ください。
- 変分法による近似解のページへのリンク