単射的とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 単射的の意味・解説 

単射

(単射的 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/16 16:11 UTC 版)

数学において、単射(たんしゃ、: injection, injective mapping)とは、相異なるの値が相異なる写像のことをいう。一対一写像(いったいいちしゃぞう、: one-to-one mapping)ということもある(紛らわしいが、これは全単射を意味する一対一対応とは異なる)。

単射であり全射でない写像 f: AB の例。
全単射 f: AB の例。

定義

集合 A を定義域、集合 B を終域とする写像 f: AB が条件

全射であり単射でない写像 f: AB の例。

正の実数 x に対して、その自乗 x2 を対応させる写像 f: R+R は単射である。ただし、正の実数全体のなす集合を R+ と表した。実際、x, y > 0 で x2 = y2 ならば、x = y となる。

全射でも単射でもない写像 f: AB の例。

ところがひとたびこれの定義域を実数の全体 R に拡張すると、これは単射でなくなる。実際、x, yRx2 = y2 ならば、y = ±x となるから、x2 はちょうど二つの元 ±x の値となっている(ただし 0 は 0 だけの値である)。

幾何学的な例としては、曲線 γ: IR2 が単射であるとき、これは単純曲線と呼ばれる。一方でデカルトの葉線などのように自己交叉する曲線は単純でない。

集合 A とその部分集合 B が与えられるとき、B の元 b (これはもちろん A の元でもあるので)を A の元としての b 自身に対応させることで、BA に包含させる写像、包含写像(ほうがんしゃぞう、inclusion

合成写像が単射ならば、先の写像は単射であるが、後の写像は単射とは限らない。
  • 単射の制限は単射である。単射の拡張は単射であるとは限らない。
  • 二つの単射の合成は単射である[4]
  • 二つの写像の合成
を可換にする写像 g : BQ が存在することである。もし ABh : AB が包含写像ならば、これは A 上の写像が常に B 上の写像に拡張できることを意味する。
  • X, Y を集合、f: XY を写像とするとき、次は同値である:
(1)



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「単射的」の関連用語

単射的のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



単射的のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの単射 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS