リュイリエの公式とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > リュイリエの公式の意味・解説 

リュイリエの公式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/03 22:01 UTC 版)

単位球上の球面三角形

リュイリエの公式(リュイリエのこうしき、英語: L'Huilier's formula)は、単位球における任意の球面三角形の3辺 a, b, c の長さから球過量 E を求める公式アドリアン=マリ・ルジャンドル18世紀末に発表した著書『Eléments de géométrie』の中で「この非常にエレガントな式はサイモン・アントワーヌ・ジャン・リュイリエによる」旨の言及をしている[1]ことから彼に帰せられる。

概要

この公式は単位球における球面三角形の球過量 E を求めるものであるが、球過量は任意の球における球面三角形の面積に直接的に関係することから、リュイリエの公式は平面三角形におけるヘロンの公式の球面三角形版に相当している。

公式

リュイリエの公式 ― 単位球における球面三角形において、3辺の長さを a, b, c とし、半周長s とすると、当該球面三角形の球過量 E




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「リュイリエの公式」の関連用語

リュイリエの公式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



リュイリエの公式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのリュイリエの公式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS