ラグランジュ部分多様体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2013/07/13 12:14 UTC 版)
をシンプレクティック多様体であるとする。
の部分多様体
が ラグランジュ部分多様体であるとは、
(1)
(2)
を満たすことをいう。
例1
をn次元シンプレクティック多様体であるとする。 また、
を次を満たす
上の 滑らかな関数たちとしよう。
(i) 互いにポアソン可換である。すなわち、シンプレクティック形式から定まる ポアソン構造に関して、が成立する。 ポアソン構造に関しては、ポアソン多様体を見よ。
(ii) は
上で一次独立である。
は
の外微分を表す。
から
への写像
を
で定義する。
このとき、もしが
の正則値であるならば、
はラグランジュ部分多様体である。
例2
をn次元多様体とし、
でその余接バンドルを表すとする。 余接バンドルを正準2形式
の入ったシンプレクティック多様体であると 思うと、
はラグランジュ部分多様体である。
関連項目
- 完全可積分
- フロベニウスの定理
ラグランジュ部分多様体と同じ種類の言葉
- ラグランジュ部分多様体のページへのリンク