ネロン・セヴィリ群とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ネロン・セヴィリ群の意味・解説 

ネロン・セヴィリ群

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/07/05 15:28 UTC 版)

代数幾何学では、代数多様体ネロン・セヴィリ群(ネロン・セヴィリぐん、: Néron–Severi group)は、代数的同値英語版による因子群の同値類群のことをいう。言い換えると、ネロン・セヴィリ群は、多様体のピカールスキーム構成要素英語版のことをいう。ネロン・セヴィリ群のランクは、ピカール数と呼ばれる。この群の命名は、フランチェスコ・セヴェリアンドレ・ネロン英語版にちなむ。

定義

古典的代数幾何学の最も重要な場合で、非特異完備多様体英語版 V に対し、ピカールスキームの連結成分は、アーベル多様体

Pic0(V)

と書かれ、商

Pic(V)/Pic0(V)

もアーベル多様体 NS(V) と書いて、V のネロン・セヴィリ群と呼ぶ。この群はネロン・セヴィリの定理により、有限生成アーベル群であり、セヴィリにより複素数体上で証明され、ネロンにより、より一般の体上で証明された。

言い換えると、ピカール群を含む次の系列は完全系列である。

ランクが有限であることは、フランチェスコ・セヴィリの基底定理(theorem of the base)で、ランクは V のピカール数であり、ρ(V) で表す。有限位数の要素はセヴィリ因子と呼ばれ、双有理不変量であり位数がセヴィリ数と名付けられた有限群を形成する。幾何学的には、NS(V) は V の因子代数的同値英語版類である。すなわち、因子の一次系英語版の代わりにより強い非線形関係を使い、分類は離散的不変量となり扱い易くなる。代数的同値は密接に数値的同値英語版と関係していて、交叉理論により本質的にはトポロジカルな分類となる。

第一チャーン類と整数に値を持つ 2-コサイクル

指数的な層系列英語版

は、長完全系列

を導く.最初の矢印はピカール群上の第一チャーン類である。

第二の矢印は、

を意味する。ネロン・セヴィリ群は第一チャーン類の像と同一視することができる。同値なことであるが、完全性により、第二の矢印 exp* の核(kernel)と同一視できる。

従って、複素数の場合、ネロン・セヴィリ群は、複素超曲面、つまりヴェイユ因子により表現されるもののポアンカレ双対である 2-コサイクルの群である。

参考文献

  • V.A. Iskovskikh (2001) [1994], “Néron–Severi group”, Encyclopedia of Mathematics, EMS Press
  • A. Néron, Problèmes arithmétiques et géometriques attachée à la notion de rang d'une courbe algébrique dans un corps Bull. Soc. Math. France, 80 (1952) pp. 101–166
  • A. Néron, La théorie de la base pour les diviseurs sur les variétés algébriques, Coll. Géom. Alg. Liège, G. Thone (1952) pp. 119–126
  • F. Severi, La base per le varietà algebriche di dimensione qualunque contenute in una data e la teoria generale delle corrispondénze fra i punti di due superficie algebriche Mem. Accad. Ital., 5 (1934) pp. 239–283



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ネロン・セヴィリ群」の関連用語

ネロン・セヴィリ群のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ネロン・セヴィリ群のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのネロン・セヴィリ群 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS