ド・ブランジュ空間とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ド・ブランジュ空間の意味・解説 

ド・ブランジュ空間

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/03/15 23:11 UTC 版)

数学において、ド・ブランジュ空間 (ドブランジュくうかん : de Branges space) とは、関数解析学上の概念であり、ド・ブランジュ関数を用いて構築される。

この概念の名前は、この空間に関する多くの定理、特にヒルベルト空間としての性質について証明し、それらを用いてビーベルバッハ予想を証明したルイ・ド・ブランジュにちなむ。

ド・ブランジュ関数

ド・ブランジュ関数 (de Branges function) とは、 から への整関数 E のうち、複素平面上半平面に属する全ての z について不等式  が満たされるものをいう。

定義1

あるド・ブランジュ関数 E に対して、ド・ブランジュ空間 B(E) は次を満たす整関数全体と定義される。

ここで、

  • は複素平面の上半平面、
  • は上開半平面上の通常のハーディ空間である。

定義2

ド・ブランジュ空間は、次の条件を満す整関数 F 全体として定義することもできる。

ヒルベルト空間として

あるド・ブランジュ空間 B(E) に対し、次の様にスカラー積を定義する。

このような積を持つド・ブランジュ空間はヒルベルト空間であることを証明できる。

参考文献

  • Christian Remling (2003). “Inverse spectral theory for one-dimensional Schrödinger operators: the A function”. Math. Z. 245: 597–617. doi:10.1007/s00209-003-0559-2. 



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ド・ブランジュ空間」の関連用語

ド・ブランジュ空間のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ド・ブランジュ空間のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのド・ブランジュ空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS