ABCモデル ABCモデルの遺伝学的解析

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ABCモデルの解説 > ABCモデルの遺伝学的解析 

ABCモデル

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/30 07:18 UTC 版)

ABCモデルの遺伝学的解析

ペチュニアの花

ABCモデルの構築のための遺伝学的解析においては、花においてホメオティック遺伝子の特徴を知るために、花器官に異常な表現型を示す突然変異体を解析することが大きなステップであった。それに続き、ABCモデルを裏付けるために各遺伝子の発現場所を特定するような解析が行われた。

変異体の分析

花の形態に影響を及ぼす突然変異は極めて多数あるが、その解析ができるようになったのは近年の進歩である。その中でもABCモデルの構築に大きな役割を果たしたのは。ある器官が他の器官が生じるべきところに異所的に形成されてしまう突然変異体である。このような変異体をホメオティック変異体と呼び、キイロショウジョウバエで初めて発見されたホメオティック遺伝子と類似の機能を持つ遺伝子の変異がその原因となっている。シロイヌナズナとキンギョソウの花におけるこの種の変異体は決まって隣り合うwhorlに同時に影響を与えており、次の三つのタイプに分類でき、それぞれの原因となっている遺伝子がAクラス、Bクラス、Cクラスと分類された。

  • Aクラスの遺伝子に変異が入った場合。シロイヌナズナにおけるapetala2(ap2)をはじめとしたこの種の変異体では、萼片の代わりに心皮が、花弁の代わりに雄蕊が形成されてしまう。
  • Bクラスの遺伝子に変異が入った場合。この変異体では花弁の代わりに萼が、雄蕊の代わりに心皮が形成されてしまう。シロイヌナズナにおいてはこの種の変異体としてapetala3pistillataが発見されている。
  • Cクラスの遺伝子に変異が入った場合。この変異体では雄蕊が花弁に、心皮が萼に変形する。シロイヌナズナにおいてはagamous変異体が知られている[注 2]

以上の変異体の表現型は、ABCモデルを導入することによって説明出来る。すなわち、ABCの各クラスの遺伝子の各whorlでの発現の組み合わせによってつくられる花器官が異なること、そしてタイプAの遺伝子とタイプCの遺伝子はお互いの発現を抑制しあっているため一方の機能が失われるともう一方が発現場所を相補することを考え合わせると、各変異体における遺伝子の発現と作られる花器官は右の図のようになる[6][20]

Aクラス変異体
B
C
心皮 雄蕊 雄蕊 心皮
Bクラス変異体
(B)
A C
がく がく 心皮 心皮
Cクラス変異体
B
A
がく 花弁 花弁 がく

  1. ^ 日本語の表記としては「ウォール」[5]「ワール」[6]などがあるが、日本語文献でもアルファベット表記が用いられることが多い[4][7]ため本記事では以下"whorl"と表記することにする。
  2. ^ なお、この時whorl 4にできた萼片の内側には花弁、萼片のみからなる二次花が、さらにその内側には三次花が…と続いており、萼と花弁からなる八重咲きの表現型を示す。これは、正常なCクラス遺伝子はWUSHEL遺伝子を抑制しその結果として花メリステムの維持を抑制する働きを持つが、Cクラス変異体ではその働きが失われてメリステムが暴走し、花の形成が止まらなくなってしまうからである[6]
  1. ^ a b The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37. (1991)
  2. ^ The ABCs of floral homeotic genes. Cell 78, 203-209. Review (1994)
  3. ^ Azcón-Bieto (2000). Fundamentos de fisiología vegetal. McGraw-Hill/Interamericana de España, SAU. ISBN 84-486-0258-7 [要ページ番号]
  4. ^ a b 高辻博志「花の器官分化を制御する遺伝子発現制御機構」『RADIOISOTOPES』第44巻第1号、1995年、 83-84頁、 doi:10.3769/radioisotopes.44.83
  5. ^ 佐々木克友, 間竜太郎, 仁木智哉, 山口博康, 鳴海貴子, 西島隆明, 林依子, 龍頭啓充, 福西暢尚, 阿部知子, 大坪憲弘「重イオンビーム照射により作出した第2ウォールが萼化したトレニアの解析」『第49回日本植物生理学会年会講演要旨集』2008年、 614頁、 doi:10.14841/jspp.2008.0.0614.0
  6. ^ a b c d アサガオの変異体を用いた花器官形成に関するABCモデルの検証”. NBRPアサガオ (2016年). 2016年11月16日閲覧。
  7. ^ 武田征士「花びら作りの分子メカニズム」『Plant Morphology』第25巻、2013年、 95-99頁、 doi:10.5685/plmorphol.25.95
  8. ^ Dornelas, Marcelo Carnier; Dornelas, Odair (2005). “From leaf to flower: Revisiting Goethe's concepts on the ¨metamorphosis¨ of plants”. Brazilian Journal of Plant Physiology 17 (4). doi:10.1590/S1677-04202005000400001. 
  9. ^ Goethe J.W. von (1790) Versuch die Metamorphose der Pflanzen zu erklaren. Gotha, Ettlinger; paragraph 120.
  10. ^ 平野博之. “花の進化”. 理学のキーワード. 東京大学理学系研究科・理学部. 2016年11月16日閲覧。
  11. ^ a b Blazquez, MA; Green, R; Nilsson, O; Sussman, MR; Weigel, D (1998). “Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter”. The Plant cell 10 (5): 791–800. doi:10.1105/tpc.10.5.791. JSTOR 3870665. PMC 144373. PMID 9596637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC144373/. 
  12. ^ Blázquez, Miguel A.; Weigel, Detlef (2000). “Integration of floral inductive signals in Arabidopsis”. Nature 404 (6780): 889–92. doi:10.1038/35009125. PMID 10786797. 
  13. ^ Brand, U.; Fletcher, JC; Hobe, M; Meyerowitz, EM; Simon, R (2000). “Dependence of Stem Cell Fate in Arabidopsis on a Feedback Loop Regulated by CLV3 Activity”. Science 289 (5479): 617–9. Bibcode2000Sci...289..617B. doi:10.1126/science.289.5479.617. PMID 10915624. 
  14. ^ Lenhard, Michael; Jürgens, Gerd; Laux, Thomas (2002). “The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation”. Development (Cambridge, England) 129 (13): 3195–206. PMID 12070094. http://dev.biologists.org/cgi/pmidlookup?view=long&pmid=12070094. 
  15. ^ a b Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. 3. (August 1991). pp. 749–58. doi:10.1105/tpc.3.8.749. JSTOR 3869269. PMC 160042. PMID 1726485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160042/. 
  16. ^ Colombo, L; Franken, J; Koetje, E; Van Went, J; Dons, HJ; Angenent, GC; Van Tunen, AJ (1995). “The petunia MADS box gene FBP11 determines ovule identity”. The Plant cell 7 (11): 1859–68. doi:10.1105/tpc.7.11.1859. PMC 161044. PMID 8535139. http://www.plantcell.org/cgi/pmidlookup?view=long&pmid=8535139. 
  17. ^ Pelaz, Soraya; Ditta, Gary S.; Baumann, Elvira; Wisman, Ellen; Yanofsky, Martin F. (2000). “B and C floral organ identity functions require SEPALLATA MADS-box genes”. Nature 405 (6783): 200–3. doi:10.1038/35012103. PMID 10821278. 
  18. ^ a b Ditta, Gary; Pinyopich, Anusak; Robles, Pedro; Pelaz, Soraya; Yanofsky, Martin F. (2004). “The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity”. Current Biology 14 (21): 1935–40. doi:10.1016/j.cub.2004.10.028. PMID 15530395. 
  19. ^ Ma, Hong (2005). “Molecular Genetic Analyses of Microsporogenesis and Microgametogenesis in Flowering Plants”. Annual Review of Plant Biology 56: 393–434. doi:10.1146/annurev.arplant.55.031903.141717. PMID 15862102. 
  20. ^ 伊藤寿朗「花の形づくりを制御する遺伝子ネットワーク ホメオティック遺伝子による生殖器官誘導」 (pdf) 『蛋白質 核酸 酵素』第50巻第3号、社団法人日本物理学会、2005年、 228-238頁。


「ABCモデル」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ABCモデル」の関連用語

ABCモデルのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ABCモデルのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのABCモデル (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS