漸化式 安定性

漸化式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/23 14:42 UTC 版)

安定性

高階線型漸化式の安定性

階数 d の線型漸化式

は特性方程式

を持つ。この漸化式の再帰性が(反復適用によって一定の値に漸近的に収束するという意味で)安定であるための必要十分条件は、固有値(つまり特性方程式の根)の全てが(実数か複素数かに関わらず)1 よりも小さい絶対値を持つことである。

一階線型漸化式の安定性

状態ベクトル x, 遷移行列 A をもつ一階の行列係数差分方程式

で、x が定常状態ベクトル x に漸近的に収斂するための必要十分条件は、遷移行列 A の全ての固有値が(それが実数か複素数かに関わらず)1 より小さい絶対値を持つことである。

一階非線型漸化式の安定性

非線型一階漸化式

を考える。この漸化式は(不動点 x の十分近くにある点は不動点 x に収斂するという意味で)局所安定であるための必要十分条件は、x の近傍で f の傾きの絶対値が 1 よりも小さいこと、つまり

が成り立つことである。非線型漸化式は複数の不動点を持つことができ、ある不動点は局所安定だが別の不動点は局所安定でないということも起こりうることに注意。f が連続なら隣接するふたつの不動点がともに局所安定となることはできない。

非線型漸化式は k > 1 なる k を周期とするサイクルをもつこともありうる。そのようなサイクルが(測度正の初期条件集合を吸引するという意味で)安定となる十分条件は、fk 回合成

が上記と同様の判定条件

に従って局所安定となることである。ここで x はサイクルの任意の点。

カオス的漸化式においては、変数 x がある有界領域に留まるが不動点にも吸引的サイクルにも収束しない。そのような方程式において任意の不動点やサイクルは不安定である。 ロジスティック写像二進変換英語版テント写像なども参照。


  1. ^ Gilson, Bruce R. (2009). The Fibonacci Sequence and Beyond. CreateSpace. pp. 16 ff.. ISBN 978-1449974114 
  2. ^ Discussion on s
  3. ^ Partial difference equations, Sui Sun Cheng, CRC Press, 2003, ISBN 9780415298841
  4. ^ Chiang, Alpha C., Fundamental Methods of Mathematical Economics, third edition, McGraw-Hill, 1984.
  5. ^ Papanicolaou, Vassilis, "On the asymptotic stability of a class of linear difference equations," Mathematics Magazine 69(1), February 1996, 34-43.
  6. ^ Sargent, Thomas J., Dynamic Macroeconomic Theory, Harvard University Press, 1987.





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「漸化式」の関連用語

漸化式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



漸化式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの漸化式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS