シルベスター数列 応用

シルベスター数列

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/24 13:50 UTC 版)

応用

Boyer, Galicki & Kollár (2005) ではシルベスター数列の性質を使って、奇数次元の球面またはエキゾチック球面英語版に対する非同値な佐々木・アインシュタイン多様体[注 4]の族を与えている[11]。彼らは論文中で、2m-3 次元の球面またはエキゾチック球面上で少なくとも 個の非同値な佐々木・アインシュタイン多様体の族を与える方法を示し、従ってそれらの数は m に対して二重指数関数的な増加を見せる。

Galambos & Woeginger (1995)が説明しているように、 Brown (1979)Liang (1980)オンラインビンパッキングアルゴリズムについて、アルゴリズムの評価の下界を与えるためにシルベスター数列の値を利用した。Seiden & Woeginger (2005) でも同様に、2次元カッティングストック問題に対して、3-stageギロチンカット解の下界を与えるためにシルベスター数列が用いられている[注 5]

Známの問題英語版は、集合の各要素がそれぞれ他の数の総積に1を足した数の真の約数であるような集合についての問題である。「真の」約数であるという条件を除くと、シルベスター数列の値はこの問題を解決する。本来の条件の下では、シルベスター数列を定めるものと同様の再帰的な手続きによって、問題の解を得ることができる[要出典]。Známの問題の解は表面特異点の分類[12]や、unary n-cyclic 正規言語を通して非決定性有限オートマトンの理論[13]への応用が存在する。

Curtiss (1922) は単位分数の k 項和で1に最も近い近似が、完全数の約数の数に下界を与えることが記されている。Miller (1919) では同じ性質が k 個の部分群を持つの位数の上界を与えるために使われている。


補注

  1. ^ 数列の増加速度と級数の無理性については、例えば数列 {an} が十分に速く増加するとき、 が無理数となることが知られている (Erdős & Graham 1980, p. 64)。
  2. ^ Andersenはこの区間で1167の素因数を見つけた[6]ため、おそらくこれは誤記である。
  3. ^ p < 5 × 107 かつ n ≦ 200 を満たす範囲において、全てのシルベスター数 sn の素因数 p はVardiによってリストされている。Ken Takusagawa は s9 までの素因数分解[9]s10 の素因数分解[10]をブログに記している。それ以外の因数分解については、Jens Kruse Andersen によるリスト[6]を出典としている。
  4. ^ 佐々木多様体英語版でもあるアインシュタイン多様体
  5. ^ 論文中でSeidenとWoegingerは、シルベスター数列を Salzer (1947) の仕事にちなんで「Salzer's sequence」という名前で言及している。

出典






英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  シルベスター数列のページへのリンク

辞書ショートカット

すべての辞書の索引

「シルベスター数列」の関連用語

シルベスター数列のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



シルベスター数列のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのシルベスター数列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS