シルベスター数列 因数分解 (可除性)

シルベスター数列

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/24 13:50 UTC 版)

因数分解 (可除性)

i < j のとき、定義から sj ≡ 1 (mod si) が成り立つ。従って、任意の2つのシルベスター数は互いに素である。任意の素数に対して、それで割り切れるシルベスター数が高々1つとなるため、これを用いて素数が無限に存在することを証明できる。より強い事実として、シルベスター数の素因数に6を法として5と合同である数 (p = 6k + 5 と表せるような素数) は存在しないこと、12を法として7と合同である素数が無限に存在することがシルベスター数列を用いて証明できる[5]

数学の未解決問題
シルベスター数列の全ての数は無平方数か?

シルベスター数の素因数分解については、多くのことが未解決のままである。例えば、全ての数が平方因子をもたない整数であるかどうか不明である (既知の数は全て平方因子を持たないことがわかっている)。

Vardi (1991)が説明しているように、与えられた素数 p で割り切れるシルベスター数がどれかを決定することは簡単である:p を法として0に合同となる数か、周期的な列のいずれかが見つかるまで、法 p の下でのシルベスター数列を計算すればよい。この方法を使って、Vardiは最初の300万個の素数のうち1166個がシルベスター数の素因数であること[注 2]、それらの数の平方がシルベスター数の因数にならないことを突き止めた。シルベスター数の因数として現れる素数の集合は、全ての素数の集合に対して密度0 (Natural density の意味で) である[7]。実際、x より小さいそのような数は オーダーとなる[8]

次の表は、シルベスター数の既知の因数分解を示している。ただし最初の4つは全て素数であるため除いている。また、一部の数は大きすぎるため桁数のみを表しており、特に明記されていなければそれらの数は素数とは限らない (unfactoredである)[注 3]

n sn の因数
4 13 × 139
5 3263443 (素数)
6 547 × 607 × 1033 × 31051
7 29881 × 67003 × 9119521 × 6212157481
8 5295435634831 × 31401519357481261 × 77366930214021991992277
9 181 × 1987 × 112374829138729 × 114152531605972711 × 35874380272246624152764569191134894955972560447869169859142453622851
10 2287 × 2271427 × 21430986826194127130578627950810640891005487 × (156桁の素数)
11 73 × (416桁)
12 2589377038614498251653 × 2872413602289671035947763837 × (785桁)
13 52387 × 5020387 × 5783021473 × 401472621488821859737 × 287001545675964617409598279 × (1600桁)
14 13999 × 74203 × 9638659 × 57218683 × 10861631274478494529 × (3293桁)
15 17881 × 97822786011310111 × 54062008753544850522999875710411 × (6618桁)
16 128551 × 115220560101116343072340969000241209 × (13300桁)
17 635263 × 1286773 × 21269959 × (26661桁)
18 50201023123 × 139263586549 × 60466397701555612333765567 × (53313桁)
19 775608719589345260583891023073879169 × (106685桁)
20 352867 × 6210298470888313 × (213419桁)
21 387347773 × 1620516511 × (426863桁)
22 91798039513 × 7919244169465663354953966404923 × (853719桁)

補注

  1. ^ 数列の増加速度と級数の無理性については、例えば数列 {an} が十分に速く増加するとき、 が無理数となることが知られている (Erdős & Graham 1980, p. 64)。
  2. ^ Andersenはこの区間で1167の素因数を見つけた[6]ため、おそらくこれは誤記である。
  3. ^ p < 5 × 107 かつ n ≦ 200 を満たす範囲において、全てのシルベスター数 sn の素因数 p はVardiによってリストされている。Ken Takusagawa は s9 までの素因数分解[9]s10 の素因数分解[10]をブログに記している。それ以外の因数分解については、Jens Kruse Andersen によるリスト[6]を出典としている。
  4. ^ 佐々木多様体英語版でもあるアインシュタイン多様体
  5. ^ 論文中でSeidenとWoegingerは、シルベスター数列を Salzer (1947) の仕事にちなんで「Salzer's sequence」という名前で言及している。

出典






英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  シルベスター数列のページへのリンク

辞書ショートカット

すべての辞書の索引

「シルベスター数列」の関連用語

シルベスター数列のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



シルベスター数列のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのシルベスター数列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS