カリスト (衛星) 表面の地形

カリスト (衛星)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/07/20 03:55 UTC 版)

表面の地形

探査機ガリレオが撮影したカリストのクレーター平原。

かつてのカリストの表面は、太陽系内で最も衝突クレーターが多いものの一つであった[43]。実際に、表面のクレーター密度は飽和状態に近く、新しいクレーターが形成される度にそれによって古いクレーターが消えるという傾向にある。大スケールでの地質は比較的単純であり、大きな山脈や火山、その他の内因性の地殻変動の特徴はカリストには見られない[44]。表面に見られる唯一の大きな地形は、破砕と断崖と堆積物を伴った衝突クレーターと多重リング構造である[12][44]

カリストの表面は地質学的に異なる複数の領域に分割できる。クレーター平原、明るい平原、明るい滑らかな平原と暗く滑らかな平原、特徴的な多重リング構造と衝突クレーターを伴った構造である[12][44]。クレーター平原は表面の大部分を覆っており、氷と岩石の混合物からなる古いリソスフェアからなっている。明るい平原は、ブル (Burr) やロフンと言った明るい衝突クレーターや、パリンプセストと呼ばれる古い大きなクレーターの残部、多重リング構造の中心部、クレーター平原の中に孤立した領域からなる[12]。これらの明るい平原は氷主体の衝突堆積物だと考えられる。明るい滑らかな平原はカリスト表面の小さい割合を占めており、ヴァルハラ (Valhalla) やアスガード (Asgard) と言った構造の縁や溝に見られ、またクレーター平原の中に孤立した斑点としても見られる。これらの地形は衛星の内部活動と関連していると考えられていたが、ガリレオによる高分解能の画像ではこれらの領域は大規模に破壊されたこぶ状の地形と関連しており、また表面が再形成されたことを示すいかなる証拠も見られなかった[12]。ガリレオの画像では小さく暗い滑らかな領域の全面積は 10,000 km2 以下であることが明らかになり、また周囲の地形を取り囲むように分布していることが明らかになった。これらは氷火山の堆積物であるかもしれない[12]。明るい平原といくつかの滑らかな平原は比較的若く、周囲のクレーター平原と比べるとクレーターの個数が少ない[12][45]

中央丘を持った衝突クレーターのハル (Hár)。右上にある新しいクレーターのティンドル (Tindr) 形成時に作られた鎖状に連なる二次クレーターが地形を横切っている。

カリストに見られるクレーターの大きさは、解像度の限界である直径 0.1 km のものから、多重リング構造を除くと 100 km を超えるものまで存在する[12]。直径が 5 km 以下の小さいクレーターは、単純なお椀状の構造か、底が平坦な形状を持つ。5〜40 km のものは一般に中央丘を持つ。直径が 25〜100 km になる大きな衝突クレーターの場合、ティンドル (Tindr) クレーターのように中央丘の代わりに中心部には穴が見られる[12]。直径が 60 km を超える最大級のクレーターは中心にドーム状の地形を持つものがあり、これはクレーター形成後の構造隆起によって形成されたものであると考えられている[12]。このような構造を持つクレーターとして、ドフ (Doh) やハル (Hár) クレーターがある。直径が 100 km を超える数少ない非常に大きなクレーターと明るい衝突クレーターは、異様なドーム状の構造を持つ。これらは異様に浅い構造をしており、ロフンクレーターのように多重リング構造への遷移の途中であると考えられる[12]。カリストのクレーターは、に見られるものよりも一般に浅い。

ボイジャー1号が撮影した多重リング構造を持つクレーターのヴァルハラ (Valhalla)。直径は 3,800 km に及ぶ。

カリストの表面に見られる最も大きい衝突地形は多重リング構造である[12][44]。特に大きなものは2つある。ヴァルハラ (Valhalla) が最も大きく、直径が 600 km の明るい中央の領域と、中心から 1,800 km の距離にまで広がった環状の構造を持つ[46]。2番目に大きいものはアスガード (Asgard) であり、直径は 1,600 km と測定されている[46]。多重リング構造はおそらく天体衝突後に、柔らかい物質やあるいは海などの液体の物質の上に横たわるリソスフェアにおける同心円状の破壊が発生したことによって形成されたと考えられている[29]。連鎖クレーターは表面を直線上に横切る長い鎖状に連なったクレーターであり、ゴムル連鎖クレーター (Gomul Catena) などが代表例である。これらは、カリストに衝突する前に木星に接近したのに伴って潮汐力で破壊された天体によって形成されたか、あるいは非常に浅い角度で表面に天体衝突が発生したかで形成されたと考えられている[12]。木星への接近に伴う天体の破壊現象としては、シューメーカー・レヴィ第9彗星が有名である。

表面にはアルベドが 80% 程度の純粋な水氷の小さい斑点状の領域が見られ、この地形はより暗い物質で囲まれている[13]。ガリレオによる高分解能の画像では、明るい領域は大部分はクレーター縁や断層、尾根やこぶ状の地形の標高の高い部分に見られることが分かっている[13]。これらは薄い水氷の霜の堆積物である可能性がある。暗い物質は一般に明るい流域を取り囲むように存在する低地に見られ、平坦な見た目をしている。これらはしばしばクレーターの底部やクレーター間の窪地に差し渡しが最大 5 km の領域を形成している[13]

右側の2つの大きなクレーターの底部の右側に、長さ 3〜3.5 km の地すべりが見られる。

キロメートルを下回るサイズでのカリストの表面は、その他の氷主体のガリレオ衛星と比べてより劣化が進んでいる[13]。例えばガニメデの暗い平原と比較すると、カリストには直径が 1 km 以下の小さいクレーターが少ない[12]。小さいクレーターの代わりに、表面には小さいこぶや穴状の地形が普遍的に存在している[13]。このこぶ状の地形は、劣化したクレーター縁の残余物であると考えられているが、その形成過程は明らかになっていない[14]。もっともらしい仮説としては、氷のゆっくりとした昇華によるという過程が提案されている。氷は 165 K 程度で昇華でき,この温度は太陽直下点で実現可能である[13]基盤岩である汚れた氷からの水やその他の揮発性物質の昇華は、基盤の分解を引き起こす。氷以外の残余物は、クレーター壁の斜面から崩れ落ちる岩屑なだれを形成する[14]。このようななだれは衝突クレーターの付近や内部でしばしば観測され、debris aprons と呼ばれている[注 2][13][12][14]。クレーター壁はしばしば gullies と呼ばれる曲がった谷状の構造によって区切られており、これは火星表面に見られる地形と類似している[13]。氷の昇華仮説では、低地にある暗い物質はかつての氷ではない物質であると解釈されており、これは元々は劣化したクレーター縁で、氷主体の基盤に覆われたものである。

カリストに見られる異なる特性を持つ領域の相対的な年齢は、クレーター密度から決定することができる。古い表面ほど多数のクレーターが見られる[47]。絶対的な年代の調査は行われていないものの、理論的な予測に基づくとクレーター平原の年齢は45億歳であると考えられており、形成年代はほぼ太陽系の形成にまで遡る。多重リング構造や衝突クレーターの年齢は、クレーター形成率として採用する値に依存しており、異なる研究者等によって10億年から40億年までの異なる年齢が算出されている[12][43]


注釈

  1. ^ 常に公転する方向を向いた半球が先行半球 (leading hemisphere)、常に公転する方向の反対側を向いた半球が後行半球 (trailing hemisphere) である。
  2. ^ 直訳すると「破片のエプロン」となる。

出典

  1. ^ 太陽系内の衛星表”. 国立科学博物館. 2019年3月8日閲覧。
  2. ^ 『オックスフォード天文学辞典』(初版第1刷)朝倉書店、92頁。ISBN 4-254-15017-2 
  3. ^ a b Planetary Satellite Mean Orbital Parameters”. Jet Propulsion Laboratory, California Institute of Technology. 2019年1月25日閲覧。
  4. ^ a b c Musotto, Susanna; Varadi, Ferenc; Moore, William; Schubert, Gerald (2002). “Numerical Simulations of the Orbits of the Galilean Satellites”. Icarus 159 (2): 500–504. Bibcode2002Icar..159..500M. doi:10.1006/icar.2002.6939. 
  5. ^ a b Cooper, John F.; Johnson, Robert E.; Mauk, Barry H.; Garrett, Garry H.; Gehrels, Neil (2001). “Energetic Ion and Electron Irradiation of the Icy Galilean Satellites” (PDF). Icarus 139 (1): 133–159. Bibcode2001Icar..149..133C. doi:10.1006/icar.2000.6498. http://people.virginia.edu/~rej/Icarus_Jan2001_Cooper_et_al.pdf. 
  6. ^ Exploring Jupiter – JIMO – Jupiter Icy Moons Orbiter – the moon Callisto”. Space Today Online. 2019年1月25日閲覧。
  7. ^ a b Chang, Kenneth (2015年3月12日). “Suddenly, It Seems, Water Is Everywhere in Solar System”. The New York Times. https://www.nytimes.com/2015/03/13/science/space/suddenly-it-seems-water-is-everywhere-in-solar-system.html 2015年3月12日閲覧。 
  8. ^ a b c d e f g h Kuskov, O.L.; Kronrod, V.A. (2005). “Internal structure of Europa and Callisto”. Icarus 177 (2): 550–369. Bibcode2005Icar..177..550K. doi:10.1016/j.icarus.2005.04.014. 
  9. ^ a b c d e f Showman, A. P.; Malhotra, R. (1999-10-01). “The Galilean Satellites”. Science 286 (5437): 77–84. doi:10.1126/science.286.5437.77. PMID 10506564. 
  10. ^ Callisto – Overview – Planets – NASA Solar System Exploration”. NASA Solar System Exploration. 2014年3月28日時点のオリジナルよりアーカイブ。2014年3月28日閲覧。
  11. ^ Glenday, Craig (2013). Guinness Book of World Records 2014. Guinness World Records Limited. p. 187. ISBN 978-1-908843-15-9 
  12. ^ a b c d e f g h i j k l m n o p q r s t u Greeley, R.; Klemaszewski, J. E.; Wagner, L. (2000). “Galileo views of the geology of Callisto”. Planetary and Space Science 48 (9): 829–853. Bibcode2000P&SS...48..829G. doi:10.1016/S0032-0633(00)00050-7. 
  13. ^ a b c d e f g h i j k l m n o p q Moore, Jeffrey M.; Chapman, Clark R.; Bierhaus, Edward B. (2004). "Callisto" (PDF). In Bagenal, F.; Dowling, T.E.; McKinnon, W.B. (eds.). Jupiter: The planet, Satellites and Magnetosphere. Cambridge University Press.
  14. ^ a b c d e Moore, Jeffrey M.; Asphaug, Erik; Morrison, David; Spencer, John R.; Chapman, Clark R.; Bierhaus, Beau; Sullivan, Robert J.; Chuang, Frank C. et al. (1999). “Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission”. Icarus 140 (2): 294–312. Bibcode1999Icar..140..294M. doi:10.1006/icar.1999.6132. https://zenodo.org/record/1229836. 
  15. ^ a b c Carlson, R. W. (1999). “A Tenuous Carbon Dioxide Atmosphere on Jupiter's Moon Callisto”. Science 283 (5403): 820–821. Bibcode1999Sci...283..820C. doi:10.1126/science.283.5403.820. PMID 9933159. https://doi.org/10.1126/science.283.5403.820. 
  16. ^ a b Liang, M. C.; Lane, B. F.; Pappalardo, R. T. (2005). “Atmosphere of Callisto”. Journal of Geophysical Research 110 (E2): E02003. Bibcode2005JGRE..11002003L. doi:10.1029/2004JE002322. https://doi.org/10.1029/2004JE002322. 
  17. ^ a b Kliore, A. J.; Anabtawi, A.; Herrera, R. G. (2002). “Ionosphere of Callisto from Galileo radio occultation observations”. Journal of Geophysical Research 107 (A11): 1407. Bibcode2002JGRA.107kSIA19K. doi:10.1029/2002JA009365. https://hdl.handle.net/2027.42/95670. 
  18. ^ a b c d Canup, Robin M.; Ward, William R. (2002). “Formation of the Galilean Satellites: Conditions of Accretion” (PDF). The Astronomical Journal 124 (6): 3404–3423. Bibcode2002AJ....124.3404C. doi:10.1086/344684. http://www.boulder.swri.edu/~robin/cw02final.pdf. 
  19. ^ a b c d e f g Spohn, T.; Schubert, G. (2003). “Oceans in the icy Galilean satellites of Jupiter?” (PDF). Icarus 161 (2): 456–467. Bibcode2003Icar..161..456S. doi:10.1016/S0019-1035(02)00048-9. http://www.igpp.ucla.edu/public/mkivelso/refs/PUBLICATIONS/SpohnSchubrt03GLLsats.pdf. 
  20. ^ a b c d Lipps, Jere H.; Delory, Gregory; Pitman, Joe (2004). “Astrobiology of Jupiter's Icy Moons”. Proc. SPIE. Instruments, Methods, and Missions for Astrobiology VIII 5555: 10. Bibcode2004SPIE.5555...78L. doi:10.1117/12.560356. https://doi.org/10.1117/12.560356. 
  21. ^ a b c Trautman, Pat (2003年). “Revolutionary Concepts for Human Outer Planet Exploration (HOPE)” (PDF). NASA. 2012年1月19日時点のオリジナルよりアーカイブ。2012年1月19日閲覧。
  22. ^ Blue, Jennifer (2009年11月9日). “Planet and Satellite Names and Discoverers”. USGS. 2019年1月25日閲覧。
  23. ^ Galilei, G. (13 March 1610). Sidereus Nuncius 
  24. ^ Van Helden, Albert (2004年1月14日). “The Galileo Project / Science / Simon Marius”. Rice University. 2019年1月25日閲覧。
  25. ^ Baalke, Ron. “Discovery of the Galilean Satellites”. Jet Propulsion Laboratory. 2010年1月7日閲覧。
  26. ^ a b Satellites of Jupiter”. The Galileo Project. 2007年7月31日閲覧。
  27. ^ Marius, S. (1614). Mundus Iovialis anno M.DC.IX Detectus Ope Perspicilli Belgici. http://galileo.rice.edu/sci/marius.html 
  28. ^ Barnard, E. E. (1892). “Discovery and Observation of a Fifth Satellite to Jupiter”. Astronomical Journal 12: 81–85. Bibcode1892AJ.....12...81B. doi:10.1086/101715. 
  29. ^ a b Klemaszewski, J.A. (2001年). “Geological Evidence for an Ocean on Callisto” (PDF). Lunar and Planetary Science XXXI. p. 1818. 2019年1月29日閲覧。
  30. ^ a b c d Anderson, J. D.; Jacobson, R. A.; McElrath, T. P.; Moore, W. B.; Schubert, G.; Thomas, P. C. (2001). “Shape, mean radius, gravity field and interior structure of Callisto”. Icarus 153 (1): 157–161. Bibcode2001Icar..153..157A. doi:10.1006/icar.2001.6664. 
  31. ^ Bills, Bruce G. (2005). “Free and forced obliquities of the Galilean satellites of Jupiter”. Icarus 175 (1): 233–247. Bibcode2005Icar..175..233B. doi:10.1016/j.icarus.2004.10.028. https://zenodo.org/record/1259023. 
  32. ^ a b c d Freeman, J. (2006). “Non-Newtonian stagnant lid convection and the thermal evolution of Ganymede and Callisto”. Planetary and Space Science 54 (1): 2–14. Bibcode2006P&SS...54....2F. doi:10.1016/j.pss.2005.10.003. 
  33. ^ United Nations Scientific Committee on the Effects of Atomic Radiation. New York: United Nations. (2008). pp. 4. ISBN 978-92-1-142274-0. http://www.unscear.org/unscear/en/publications/2008_1.html 
  34. ^ Frederick A. Ringwald (2000年2月29日). “SPS 1020 (Introduction to Space Sciences)”. California State University, Fresno. 2009年9月20日時点のオリジナルよりアーカイブ。2009年7月4日閲覧。
  35. ^ Clark, R. N. (1981-04-10). “Water frost and ice: the near-infrared spectral reflectance 0.65–2.5 μm”. Journal of Geophysical Research 86 (B4): 3087–3096. Bibcode1981JGR....86.3087C. doi:10.1029/JB086iB04p03087. http://www.agu.org/pubs/crossref/1981/JB086iB04p03087.shtml 2010年3月3日閲覧。. 
  36. ^ a b Brown, R. H.; Baines, K. H.; Bellucci, G.; Bibring, J-P.; Buratti, B. J.; Capaccioni, F.; Cerroni, P.; Clark, R. N. et al. (2003). “Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini's Flyby of Jupiter”. Icarus 164 (2): 461–470. Bibcode2003Icar..164..461B. doi:10.1016/S0019-1035(03)00134-9. 
  37. ^ Noll, K.S. (1996). Detection of SO2 on Callisto with the Hubble Space Telescope (PDF). Lunar and Planetary Science XXXI. p. 1852.
  38. ^ a b Hibbitts, C.A.; McCord, T. B.; Hansen, G.B. (1998). Distributions of CO2 and SO2 on the Surface of Callisto (PDF). Lunar and Planetary Science XXXI. p. 1908.
  39. ^ Khurana, K. K.; Kivelson, M. G.; Stevenson, D. J.; Schubert, G.; Russell, C. T.; Walker, R. J.; Polanskey, C. (1998). “Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto” (PDF). Nature 395 (6704): 777–780. Bibcode1998Natur.395..777K. doi:10.1038/27394. PMID 9796812. http://www.igpp.ucla.edu/people/mkivelson/Publications/N395777.pdf. 
  40. ^ a b Zimmer, C.; Khurana, K. K.; Kivelson, Margaret G. (2000). “Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations” (PDF). Icarus 147 (2): 329–347. Bibcode2000Icar..147..329Z. doi:10.1006/icar.2000.6456. http://www.igpp.ucla.edu/people/mkivelson/Publications/ICRUS147329.pdf. 
  41. ^ Anderson, J. D.; Schubert, G.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Sjo Gren, W. L. (1998). “Distribution of Rock, Metals and Ices in Callisto”. Science 280 (5369): 1573–1576. Bibcode1998Sci...280.1573A. doi:10.1126/science.280.5369.1573. PMID 9616114. https://hdl.handle.net/2014/19178. 
  42. ^ Sohl, F.; Spohn, T.; Breuer, D.; Nagel, K. (2002). “Implications from Galileo Observations on the Interior Structure and Chemistry of the Galilean Satellites”. Icarus 157 (1): 104–119. Bibcode2002Icar..157..104S. doi:10.1006/icar.2002.6828. 
  43. ^ a b Zahnle, K.; Dones, L.; Levison, Harold F. (1998). “Cratering Rates on the Galilean Satellites”. Icarus 136 (2): 202–222. Bibcode1998Icar..136..202Z. doi:10.1006/icar.1998.6015. PMID 11878353. https://doi.org/10.1006/icar.1998.6015. 
  44. ^ a b c d Bender, K. C.; Rice, J. W.; Wilhelms, D. E.; Greeley, R. (1997). Geological map of Callisto. 25. 91. Bibcode1994LPI....25...91B. オリジナルの2015-01-24時点におけるアーカイブ。. https://web.archive.org/web/20150124085702/http://astrogeology.usgs.gov/Projects/PlanetaryMapping/DIGGEOL/galsats/callisto/jcglobal.htm 2017年8月28日閲覧。 
  45. ^ Wagner, R.; Neukum, G.; Greeley, R (March 2001). Fractures, Scarps, and Lineaments on Callisto and their Correlation with Surface Degradation (PDF). 32nd Annual Lunar and Planetary Science Conference.
  46. ^ a b Controlled Photomosaic Map of Callisto JC 15M CMN (Map) (2002 ed.). U.S. Geological Survey.
  47. ^ Chapman, C.R.; Merline, W.J.; Bierhaus, B. (1997). Populations of Small Craters on Europa, Ganymede, and Callisto: Initial Galileo Imaging Results (PDF). Lunar and Planetary Science XXXI. p. 1221.
  48. ^ Strobel, Darrell F.; Saur, Joachim; Feldman, Paul D. (2002). “Hubble Space Telescope Space Telescope Imaging Spectrograph Search for an Atmosphere on Callisto: a Jovian Unipolar Inductor”. The Astrophysical Journal 581 (1): L51–L54. Bibcode2002ApJ...581L..51S. doi:10.1086/345803. 
  49. ^ Spencer, John R.; Calvin, Wendy M. (2002). “Condensed O2 on Europa and Callisto” (PDF). The Astronomical Journal 124 (6): 3400–3403. Bibcode2002AJ....124.3400S. doi:10.1086/344307. http://www.boulder.swri.edu/~spencer/o2europa.pdf. 
  50. ^ Roth, Lorenz, et al (2017-05-27). “Detection of a hydrogen corona at Callisto”. Journal of Geophysical Research: Planets 122 (5): 1046–1055. Bibcode2017JGRE..122.1046R. doi:10.1002/2017JE005294. 
  51. ^ Alday, Juan; Roth, Lorenz; Ivchenko, Nickolay; Retherford, Kurt D; Becker, Tracy M; Molyneux, Philippa; Saur, Joachim (2017-11-15). “New constraints on Ganymede's hydrogen corona: Analysis of Lyman-α emissions observed by HST/STIS between 1998 and 2014”. Planetary and Space Science 148: 35–44. Bibcode2017P&SS..148...35A. doi:10.1016/j.pss.2017.10.006. ISSN 0032-0633. 
  52. ^ a b c d e McKinnon, William B. (2006). “On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto”. Icarus 183 (2): 435–450. Bibcode2006Icar..183..435M. doi:10.1016/j.icarus.2006.03.004. 
  53. ^ a b c Nagel, K.a; Breuer, D.; Spohn, T. (2004). “A model for the interior structure, evolution, and differentiation of Callisto”. Icarus 169 (2): 402–412. Bibcode2004Icar..169..402N. doi:10.1016/j.icarus.2003.12.019. 
  54. ^ Showman, A. P.; Malhotra, R. (March 1997). “Tidal evolution into the Laplace resonance and the resurfacing of Ganymede”. Icarus 127 (1): 93–111. Bibcode1997Icar..127...93S. doi:10.1006/icar.1996.5669. 
  55. ^ Baldwin, E. (2010年1月25日). “Comet impacts explain Ganymede-Callisto dichotomy”. Astronomy Now. 2010年3月1日閲覧。
  56. ^ Barr, A. C.; Canup, R. M. (3 August 2008). “Constraints on gas giant satellite formation from the interior states of partially differentiated satellites”. Icarus 198 (1): 163–177. Bibcode2008Icar..198..163B. doi:10.1016/j.icarus.2008.07.004. 
  57. ^ Barr, A. C.; Canup, R. M. (March 2010). Origin of the Ganymede/Callisto dichotomy by impacts during an outer solar system late heavy bombardment (PDF). 41st Lunar and Planetary Science Conference (2010). Houston. 2010年3月1日閲覧
  58. ^ Barr, A. C.; Canup, R. M. (2010-01-24). “Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment”. Nature Geoscience 3 (2010-03): 164–167. Bibcode2010NatGe...3..164B. doi:10.1038/NGEO746. 
  59. ^ Phillips, Tony (1998年10月23日). “Callisto makes a big splash”. NASA. 2015年8月15日閲覧。
  60. ^ Phillips, T. (1998年10月23日). “Callisto makes a big splash”. Science@NASA. 2009年12月29日時点のオリジナルよりアーカイブ。2009年12月29日閲覧。
  61. ^ François, Raulin (2005). “Exo-Astrobiological Aspects of Europa and Titan: from Observations to speculations”. Space Science Reviews 116 (1–2): 471–487. Bibcode2005SSRv..116..471R. doi:10.1007/s11214-005-1967-x. 
  62. ^ Morring, F. (2007-05-07). “Ring Leader”. Aviation Week & Space Technology: 80–83. 
  63. ^ Amos, Jonathan (2012年5月2日). “Esa selects 1bn-euro Juice probe to Jupiter”. BBC News Online. https://www.bbc.co.uk/news/science-environment-17917102 2012年5月2日閲覧。 
  64. ^ Rincon, Paul (2009年2月20日). “Jupiter in space agencies' sights”. BBC News. http://news.bbc.co.uk/1/hi/sci/tech/7897585.stm 2009年2月20日閲覧。 
  65. ^ Cosmic Vision 2015–2025 Proposals”. ESA (2007年7月21日). 2009年2月20日閲覧。
  66. ^ a b Vision for Space Exploration” (PDF). NASA (2004年2月). 2019年1月28日閲覧。
  67. ^ Troutman, Patrick A.; Bethke, Kristen; Stillwagen, Fred; Caldwell, Darrell L. Jr.; Manvi, Ram; Strickland, Chris; Krizan, Shawn A. (2003-01-28). “Revolutionary Concepts for Human Outer Planet Exploration (HOPE)”. AIP Conference Proceedings 654: 821–828. Bibcode2003AIPC..654..821T. doi:10.1063/1.1541373. 
  68. ^ High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto” (PDF). NASA (2003年). 2019年1月28日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「カリスト (衛星)」の関連用語

カリスト (衛星)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



カリスト (衛星)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのカリスト (衛星) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS