平均場ゲーム理論
平均場ゲーム理論(へいきんばゲームりろん、Mean-field game theory)は、非常に大規模な集団における小さな相互作用エージェントによる戦略的意思決定の研究である。
解説
ゲーム理論と確率分析および制御理論の交差点にある。「平均場」という用語の使用は、個々の粒子がシステムに与える影響がごくわずかである多数の粒子のシステムの挙動を考慮する物理学の平均場理論に触発されている。言い換えると、各エージェントは、他のエージェントの決定を考慮して、最小化または最大化の問題に従って行動し、その母集団が多いため、エージェントの数は無限大へ向かうと仮定でき、代表的なエージェントが存在するとも仮定できる。[1]
伝統的なゲーム理論では、研究対象は通常、2人のプレイヤーと離散的な時間空間を持つゲームであり、帰納法によって結果をより複雑な状況に拡張する。ただし、連続状態を持つ連続時間のゲーム(差分ゲームまたは確率的差分ゲーム)の場合、動的相互作用が生成する複雑さのために、この戦略は使用できない。一方、MFGでは、平均代表エージェントを介して多数のプレーヤーを処理できると同時に、複雑な状態のダイナミクスを記述できる。
このクラスの問題は、ボヤン・ヨバノビッチとロバート・W・ローゼンタールによる経済学文献[2]、ミンイ・ファン、ローランド・マルハメ、ピーター・E・ケインズによる工学文献[3][4][5] 、そして数学者ジャン・ミッシェル・ラスリーと ピエール=ルイ・リオンによって独立してほぼ同時に検討された[6][7]。
連続時間では、平均場ゲームは通常、個人の最適制御を記述するハミルトン–ヤコビ–ベルマン方程式と、エージェントの集合分布のダイナミクスを記述するフォッカー–プランク方程式で構成される。かなり一般的な仮定の下では、平均場ゲームのクラスが次のようにNプレイヤーのナッシュ均衡の カテゴリ
- 平均場ゲーム理論のページへのリンク