Incidence matrixとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Incidence matrixの意味・解説 

接続行列

(Incidence matrix から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/05/07 14:03 UTC 版)

数学において、接続行列(せつぞくぎょうれつ、: Incidence matrix)は、2つのオブジェクトクラス間の関係を示す行列である。1つ目のクラスをX、2つ目をYとすると、接続行列は、Xのそれぞれの要素について1つの行を、Yのそれぞれの要素について1つの列を持つ。行xおよび列y中の成分はxおよびyが関連(この文脈においてincidentと呼ばれる)しているならば1であり、関連していないならば0である。以下に示すように変種が存在する。

グラフ理論

接続行列はグラフ理論において頻繁に使われる。

無向グラフと有向グラフ

無向グラフ

グラフ理論において無向グラフは2種類の接続行列、非向き付け (unoriented) 接続行列と向き付け (oriented) 接続行列を持つ。

無向グラフの「非向き付け接続行列」(または単に「接続行列」)はn × m行列Bである(nおよびmはそれぞれ頂点および辺の数)。頂点viと辺ejが接続しているならばBi,j = 1、それ以外は0である。

例えば、右に示す無向グラフの接続行列は4つの行(4つの頂点1–4に対応)と4つの列(4つの辺e1–e4に対応)から構成される行列である

e1 e2 e3 e4
1 1 1 1 0
2 1 0 0 0
3 0 1 0 1
4 0 0 1 1
=




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Incidence matrix」の関連用語

Incidence matrixのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Incidence matrixのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの接続行列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS