誕生日のパラドックスとは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 論理 > パラドックス > 誕生日のパラドックスの意味・解説 

誕生日のパラドックス

(誕生日の問題 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/07 07:09 UTC 版)

誕生日のパラドックス(たんじょうびのパラドックス、: birthday paradox)とは「何人集まれば、その中に誕生日が同一の2人(以上)がいる確率が、50%を超えるか?」という問題から生じるパラドックスである。鳩の巣原理より、366人(閏日も考えるなら367人)が集まれば確率は100%となるが、その5分の1に満たない70人でもこの確率は99.9%を超え、50%を超えるのに必要な人数はわずか23人である。

誕生日のパラドックスの「パラドックス」は、論理的矛盾という意味ではなく、結果が一般的な直感に反するという意味でのパラドックスである。

この理論の背景には Z.E. Schnabel によって記述された「湖にいる魚の総数の推定[1]」がある。これは、統計学では標的再捕獲法 (capture‐recapture法) として知られている。

誕生日問題

ある集団に同じ誕生日のペアがいる確率。23人で確率が初めて0.5を超えるのがわかる

上記の確率を求める問題やその類似問題は、誕生日問題とよばれる。

あなたが22人の人間がいる部屋に入ったとき、「あなたと同じ」誕生日の人がいる確率は50%よりずっと低い。これは、「あなた以外の人」同士の誕生日が同じであるという可能性は考慮されないからである。

それでは、n人の中で同じ誕生日の人が少なくとも2人いる場合の確率を計算する。閏年や双子は考えないものとし、誕生日は365日とも等確率であるとする。

まずは、n人の誕生日が全て異なる場合の確率 p1 を計算する。

2人目が1人目と異なっている誕生日である確率は、364/365 である。次に、3人目が1人目2人目と異なる誕生日である確率は 363/365 である。同様に4人目は 362/365、…、n人目は (365-n+1)/365 となる。 つまり、n人の誕生日が全て異なる確率は次のようになる。





誕生日のパラドックスと同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「誕生日のパラドックス」の関連用語

誕生日のパラドックスのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



誕生日のパラドックスのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの誕生日のパラドックス (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS